PHARMACOKINETICS USING FLUORINE NMR IN VIVO

[1]  P. Bachert Kinetics of heteronuclear cross-relaxation in dipolar coupled-spin systems: applications to in vivo measurements , 1997 .

[2]  E E de Lange,et al.  MR imaging and spectroscopy using hyperpolarized 129Xe gas: Preliminary human results , 1997, Magnetic resonance in medicine.

[3]  Stephen R. Thomas,et al.  Application of a 3D volume 19FMR imaging protocol for mapping oxygen tension (pO2) in perfluorocarbons at low field , 1997, Magnetic resonance in medicine.

[4]  T. Brown,et al.  Simultaneous 3D NMR spectroscopy of proton‐decoupled fluorine and phosphorus in human liver during 5‐fluorouracil chemotherapy , 1997, Magnetic resonance in medicine.

[5]  J. Griffiths,et al.  In vivo detection of ifosfamide by 31P-MRS in rat tumours: increased uptake and cytotoxicity induced by carbogen breathing in GH3 prolactinomas. , 1997, British Journal of Cancer.

[6]  G Brix,et al.  Assessment of the biodistribution and metabolism of 5-fluorouracil as monitored by 18F PET and 19F MRI: a comparative animal study. , 1996, Nuclear medicine and biology.

[7]  H C Charles,et al.  Human lung air spaces: potential for MR imaging with hyperpolarized He-3. , 1996, Radiology.

[8]  Peter Bachert,et al.  Nuclear magnetic resonance imaging of airways in humans with use of hyperpolarized 3He , 1996, Magnetic resonance in medicine.

[9]  O. Gonen,et al.  Simultaneous 3D NMR spectroscopy of fluorine and phosphorus in human liver during 5‐fluorouracil chemotherapy , 1996, Magnetic resonance in medicine.

[10]  A. Wyrwicz,et al.  Characterization of the cerebral distribution of general anesthetics in vivo by two‐dimensional 19F chemical shift imaging , 1996, Magnetic resonance in medicine.

[11]  T. Brown,et al.  Quantitation of 5-fluorouracil catabolism in human liver in vivo by three-dimensional localized 19F magnetic resonance spectroscopy. , 1996, Clinical cancer research : an official journal of the American Association for Cancer Research.

[12]  D. Collins,et al.  Measurement of plasma 5-fluorouracil by high-performance liquid chromatography with comparison of results to tissue drug levels observed using in vivo 19F magnetic resonance spectroscopy in patients on a protracted venous infusion with or without interferon-alpha. , 1996, Annals of oncology : official journal of the European Society for Medical Oncology.

[13]  J. Griffiths,et al.  Pharmacokinetics of the 13C labeled anticancer agent temozolomide detected in vivo by selective cross‐polarization transfer , 1995, Magnetic resonance in medicine.

[14]  W. J. Lorenz,et al.  19F-{1H} Nuclear Overhauser Effect and Proton Decoupling of 5-Fluorouracil and α-Fluoro-β-Alanine , 1995 .

[15]  J R Griffiths,et al.  Proton NMR Observation of the Antineoplastic Agent Iproplatin In Vivo by Selective Multiple Quantum Coherence Transfer (Sel‐MQC) , 1995, Magnetic resonance in medicine.

[16]  L. Hedlund,et al.  MR Imaging with Hyperpolarized 3He Gas , 1995, Magnetic resonance in medicine.

[17]  M. Ellis,et al.  Identification and quantification of fluorine-containing metabolites of 1-chloro-2,2,2-trifluoroethane (HCFC133A) in the rat by 19F-NMR spectroscopy. , 1995, Drug metabolism and disposition: the biological fate of chemicals.

[18]  W. Happer,et al.  Biological magnetic resonance imaging using laser-polarized 129Xe , 1994, Nature.

[19]  J. T. Gerig Fluorine NMR of proteins , 1994 .

[20]  W. J. Lorenz,et al.  Drug monitoring of 5-fluorouracil: in vivo 19F NMR study during 5-FU chemotherapy in patients with metastases of colorectal adenocarcinoma. , 1994, Magnetic resonance imaging.

[21]  S. Thomas,et al.  Quantitative pO2 imaging in vivo with perfluorocarbon F-19 NMR: tracking oxygen from the airway through the blood to organ tissues. , 1994, Artificial cells, blood substitutes, and immobilization biotechnology.

[22]  P. Bachert,et al.  Dynamic 13C−1H nuclear polarization of lipid methylene resonances applied to broadband proton‐decoupled in vivo 13C MR spectroscopy of human breast and calf tissue , 1993, Magnetic resonance in medicine.

[23]  M. Roberts,et al.  In vivo 19F NMR studies of hyperthermia: Hydrophobic environments probed by halothane , 1993, NMR in biomedicine.

[24]  G. van Kaick,et al.  Studies with positron emission tomography after systemic administration of fluorine-18-uracil in patients with liver metastases from colorectal carcinoma. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  J. Gore,et al.  Imaging oxygen tension in liver and spleen by 19F NMR , 1993, Magnetic resonance in medicine.

[26]  P. Antich,et al.  In vivo oxygen tension and temperature: Simultaneous determination using 19F NMR spectroscopy of perfluorocarbon , 1993, Magnetic resonance in medicine.

[27]  B D Ross,et al.  A 15N NMR study of in vivo cerebral glutamine synthesis in hyperammonemic rats , 1993, NMR in biomedicine.

[28]  H. Kalbitzer,et al.  A new high sensitivity 19F probe for labeling cysteine groups of proteins , 1992, NMR in biomedicine.

[29]  P. Bachert,et al.  Kinetics of the in vivo31P1H nuclear overhauser effect of the human-calf-muscle phosphocreatine resonance , 1992 .

[30]  R. Maxwell,et al.  In vivo and ex vivo magnetic resonance spectroscopy as applied to pharmacokinetic studies with anticancer agents: a review , 1992, NMR in biomedicine.

[31]  A. Lammertsma,et al.  Positron emission tomography for tumour assessment , 1992, NMR in biomedicine.

[32]  W. J. Lorenz,et al.  In vivo 1H, 31P‐{1H} and 13C‐{1H} magnetic resonance spectroscopy of malignant histiocytoma and skeletal muscle tissue in man , 1992, NMR in biomedicine.

[33]  C T Moonen,et al.  In vivo 17O NMR study of rat brain during 17O2 inhalation , 1992, Magnetic resonance in medicine.

[34]  J. T. Gerig,et al.  19F {1H} NOE determinations in surface-coil experiments , 1992 .

[35]  L B Sheiner,et al.  Population pharmacokinetics/dynamics. , 1992, Annual review of pharmacology and toxicology.

[36]  W. Wolf,et al.  In vivo measurements of intratumoral metabolism, modulation, and pharmacokinetics of 5-fluorouracil, using 19F nuclear magnetic resonance spectroscopy. , 1991, Cancer research.

[37]  N. Schuff,et al.  19F nuclear magnetic resonance spectroscopy of neuroleptics: The first in vivo pharmacokinetics of trifluoperazine in the rat brain and the first in vivo spectrum of fluphenazine in the human brain , 1991, Biological Psychiatry.

[38]  T. Prolla,et al.  13 C NMR visibility of rabbit muscle glycogen in vivo , 1991, Magnetic resonance in medicine.

[39]  U. Keller,et al.  13C NMR for the assessment of human brain glucose metabolism in vivo. , 1991, Biochemistry.

[40]  N. Beckmann,et al.  Natural-abundance 13C spectroscopic imaging applied to humans , 1991 .

[41]  W. Semmler,et al.  Kinetic modeling of in vivo—nuclear magnetic resonance spectroscopy data: 5–Fluorouracil in liver and liver tumors , 1991, Clinical pharmacology and therapeutics.

[42]  R. Martino,et al.  Uses and Limitations of Nuclear Magnetic Resonance (NMR) Spectroscopy in Clinical Pharmacokinetics , 1991, Clinical pharmacokinetics.

[43]  C. Karson,et al.  Detection of psychoactive drugs in vivo in humans using 19F NMR spectroscopy , 1991, Biological Psychiatry.

[44]  T. Ng,et al.  19F magnetic resonance spectroscopy studies of the metabolism of 5-fluorouracil in murine RIF-1 tumors and liver. , 1991, Cancer research.

[45]  P. Antich,et al.  Tissue oxygenation: A novel determination using 19F surface coil NMR spectroscopy of sequestered perfluorocarbon emulsion , 1991, Magnetic resonance in medicine.

[46]  R. Herrmann,et al.  Pharmacokinetics of 5‐Fluorouracil After Short Systemic Infusion: Plasma Level at the End of the Distribution Phase as an Indicator of the Total Area Under the Plasma Concentration‐Time Curve , 1991, Therapeutic drug monitoring.

[47]  J. Griffiths,et al.  19F nuclear magnetic resonance imaging of drug distribution in vivo: The disposition of an antifolate anticancer drug in mice , 1991, Magnetic resonance in medicine.

[48]  G. Weckbecker Biochemical pharmacology and analysis of fluoropyrimidines alone and in combination with modulators. , 1991, Pharmacology & therapeutics.

[49]  J. Macher,et al.  Noninvasive in vivo detection of a fluorinated neuroleptic in the human brain by 19F nuclear magnetic resonance spectroscopy , 1990, Psychiatry Research: Neuroimaging.

[50]  I. Gribbestad,et al.  In vivo tissue pharmacokinetics by fluorine magnetic resonance spectroscopy: A study of liver and muscle disposition of fleroxacin in humans , 1990, Clinical pharmacology and therapeutics.

[51]  C. Presant,et al.  Human tumor fluorouracil trapping: clinical correlations of in vivo 19F nuclear magnetic resonance spectroscopy pharmacokinetics. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[52]  J. Griffiths,et al.  Pharmacokinetic studies with the antifolate C2-desamino-C2-methyl-N10-propargyl-2'-trifluoromethyl-5,8-dideazafolic acid (CB3988) in mice and rats using in vivo 19F-NMR spectroscopy. , 1990, British Journal of Cancer.

[53]  N. Jagannathan,et al.  In Vivo NMR spectroscopy of lithium‐7 in humans , 1990, Magnetic resonance in medicine.

[54]  W. J. Lorenz,et al.  In vivo nuclear overhauser effect in 31P‐ {1H} double‐resonance experiments in a 1.5‐T whole‐body MR system , 1990, Magnetic resonance in medicine.

[55]  J. Griffiths,et al.  In vivo 19F NMR spectroscopy of the antimetabolite 5-fluorouracil and its analogues. An assessment of drug metabolism. , 1990, Biochemical pharmacology.

[56]  R G Shulman,et al.  Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. , 1990, The New England journal of medicine.

[57]  C. Maerschalk,et al.  Spin-lattice relaxation times and nuclear Overhauser enhancement effect for 31P metabolites in model solutions at two frequencies: implications for in vivo spectroscopy. , 1990, Magnetic resonance imaging.

[58]  W. J. Lorenz,et al.  Real-time follow-up of 5-fluorouracil metabolism in the liver of tumor patients by means of F-19 MR spectroscopy. , 1990, Radiology.

[59]  J. Griffiths,et al.  19F MRS studies of fluoropyrimidine chemotherapy. A review , 1989, NMR in biomedicine.

[60]  A. Heerschap,et al.  Broadband proton decoupled natural abundance 13C NMR spectroscopy of humans at 1.5 T , 1989, NMR in biomedicine.

[61]  J. Griffiths,et al.  Prediction of 5-fluorouracil cytotoxicity towards the Walker carcinosarcoma using peak integrals of fluoronucleotides measured by MRS in vivo. , 1989, British Journal of Cancer.

[62]  L. Phillips,et al.  Fluorine 19 NMR studies of the interaction of selectively labeled actin and myosin , 1989 .

[63]  David Neuhaus,et al.  The Nuclear Overhauser Effect in Structural and Conformational Analysis , 1989 .

[64]  P R Luyten,et al.  Broadband proton decoupling in human 31p NMR spectroscopy , 1989, NMR in biomedicine.

[65]  H. Bruhn,et al.  Localized high‐resolution proton NMR spectroscopy using stimulated echoes: Initial applications to human brain in vivo , 1989, Magnetic resonance in medicine.

[66]  Malcolm Rowland,et al.  Clinical pharmacokinetics : concepts and applications , 1989 .

[67]  G. Peters,et al.  Pharmacokinetics of 5-fluorouracil assessed with a sensitive mass spectrometric method in patients on a dose escalation schedule. , 1988, Cancer research.

[68]  H. Pinedo,et al.  Fluorouracil: biochemistry and pharmacology. , 1988, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[69]  L. Sillerud,et al.  Differentiation of human tumors from nonmalignant tissue by natural‐abundance 13C NMR spectroscopy , 1988, Magnetic resonance in medicine.

[70]  R. Martino,et al.  Direct 19f NMR spectroscopic observation of 5‐fluorouracil metabolism in the isolated perfused mouse liver model , 1988, NMR in Biomedicine.

[71]  R. Herrmann,et al.  Metabolites of 5-fluorouracil in plasma and urine, as monitored by 19F nuclear magnetic resonance spectroscopy, for patients receiving chemotherapy with or without methotrexate pretreatment. , 1988, Cancer research.

[72]  P. Renshaw,et al.  In vivo measurement of lithium in humans by nuclear magnetic resonance spectroscopy , 1988, Biological Psychiatry.

[73]  D. Delpy,et al.  19F NMR imaging of blood oxygenation in the brain , 1988, Magnetic resonance in medicine.

[74]  C. Moonen,et al.  The noninvasive determination of linoleic acid content of human adipose tissue by natural abundance carbon‐13 nuclear magnetic resonance , 1988, Magnetic resonance in medicine.

[75]  H. Kappus,et al.  Cytotoxic effects of adriamycin bleomycin gossypol and hydroxyanisole to cultured human malignant melanoma cells , 1987 .

[76]  R. Diasio,et al.  Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. , 1987, Cancer research.

[77]  Michael Garwood,et al.  Amplitude- and frequency-modulated pulses to achieve 90° plane rotations with inhomogeneous B1 fields , 1987 .

[78]  P. Callaghan,et al.  Sensitivity and resolution in NMR imaging , 1987 .

[79]  G. Radda,et al.  Rotating-frame depth selection and its application to the study of human organs , 1987 .

[80]  D. Doddrell,et al.  In vivo determination of body iron stores by natural‐abundance deuterium magnetic resonance spectroscopy , 1987, Magnetic resonance in medicine.

[81]  W Wolf,et al.  Fluorine-19 NMR spectroscopic studies of the metabolism of 5-fluorouracil in the liver of patients undergoing chemotherapy. , 1987, Magnetic resonance imaging.

[82]  A W Kelman,et al.  Population Pharmacokinetics Theory and Clinical Application , 1986, Clinical pharmacokinetics.

[83]  M. Nahabedian,et al.  Pharmacokinetics of 5-fluorouracil in rabbits in experimental regional chemotherapy. , 1986, Cancer research.

[84]  C. V. D. van de Velde,et al.  Non-linear pharmacokinetics of 5-fluorouracil as described by in vivo behaviour of 5,6 dihydro-5-fluorouracil. , 1986, Biochemical pharmacology.

[85]  G. Bodey,et al.  Distribution and inhibition of dihydrouracil dehydrogenase activities in human tissues using 5-fluorouracil as a substrate. , 1986, Anticancer research.

[86]  J. Armand,et al.  Evidence for the importance of 5'-deoxy-5-fluorouridine catabolism in humans from 19F nuclear magnetic resonance spectrometry. , 1986, Cancer research.

[87]  W D Ensminger,et al.  Steady-state nonlinear pharmacokinetics of 5-fluorouracil during hepatic arterial and intravenous infusions in cancer patients. , 1986, Cancer research.

[88]  Roger J. Ordidge,et al.  Image-selected in Vivo spectroscopy (ISIS). A new technique for spatially selective nmr spectroscopy , 1986 .

[89]  L. J. Busse,et al.  MR imaging of the lung using liquid perfluorocarbons. , 1986, Journal of computer assisted tomography.

[90]  F N Naguib,et al.  Enzymes of uracil catabolism in normal and neoplastic human tissues. , 1985, Cancer research.

[91]  P. Renshaw,et al.  In Vivo Nuclear Magnetic Resonance Imaging of Lithium , 1985, Magnetic resonance in medicine.

[92]  R. Diasio,et al.  Dihydrofluorouracil, a fluorouracil catabolite with antitumor activity in murine and human cells. , 1985, Cancer research.

[93]  A. Haase,et al.  Chemical shift selective MR imaging using a whole-body magnet. , 1985, Radiology.

[94]  J. Armand,et al.  Complete urinary excretion profile of 5-fluorouracil during a six-day chemotherapeutic schedule, as resolved by 19F nuclear magnetic resonance. , 1985, Clinical chemistry.

[95]  D Matthaei,et al.  1H NMR chemical shift selective (CHESS) imaging. , 1985, Physics in medicine and biology.

[96]  M. Roberts,et al.  Correlation of 19F-NMR spectra of halothane in rat tumor and non-tumor tissues with membrane alterations. , 1985, Biochimica et biophysica acta.

[97]  B R Rosen,et al.  In Vivo 19F NMR Imaging , 1985, Journal of computer assisted tomography.

[98]  J. Ra,et al.  In Vivo NMR Imaging of Sodium‐23 in the Human Head , 1985, Journal of computer assisted tomography.

[99]  R. Peshock,et al.  Flourine-19 NMR spectroscopy and imaging investigations of myocardial perfusion and cardiac function , 1985 .

[100]  J. L. Steimer,et al.  Variability in drug therapy : description, estimation, and control : a Sandoz workshop , 1985 .

[101]  J. Armand,et al.  Release of fluoride ion from 5'-deoxy-5-fluorouridine, an antineoplastic fluoropyrimidine, in humans. , 1985, Drug metabolism and disposition: the biological fate of chemicals.

[102]  T. Brady,et al.  The fluorinated anesthetic halothane as a potential NMR biologic probe. , 1984, Biochimica et biophysica acta.

[103]  S K Hilal,et al.  In vivo MR spectroscopic imaging with P-31. Work in progress. , 1984, Radiology.

[104]  T. Ng,et al.  Depth pulse sequences for surface coils: spatial localization and T1 measurements , 1984, Magnetic resonance in medicine.

[105]  M. S. Silver,et al.  Highly selective {π}/{2} and π pulse generation , 1984 .

[106]  D. Hoult,et al.  Selective population inversion in NMR , 1984, Nature.

[107]  D. Keppler,et al.  Substrate properties of 5-fluorouridine diphospho sugars detected in hepatoma cells. , 1984, Biochemical pharmacology.

[108]  J. Griffiths,et al.  5-fluorouracil metabolism monitored in vivo by 19F NMR. , 1984, British Journal of Cancer.

[109]  R. Shafer,et al.  In vivo 19F-NMR of 5-fluorouracil incorporation into RNA and metabolites in Escherichia coli cells. , 1984, Biochimica et biophysica acta.

[110]  F Valeriote,et al.  5-Fluorouracil (FUra). , 1984, Pharmacology & therapeutics.

[111]  A. Wyrwicz,et al.  Multiple environments of fluorinated anesthetics in intact tissues observed with 19F NMR spectroscopy , 1983, FEBS letters.

[112]  B. Rosen,et al.  Nuclear magnetic resonance: in vivo proton chemical shift imaging. Work in progress. , 1983, Radiology.

[113]  A. J. Shaka,et al.  Evaluation of a new broadband decoupling sequence: WALTZ-16 , 1983 .

[114]  Robert R. Moore,et al.  Fluorinated anesthetics as probes of lipophilic environments in tumors , 1983 .

[115]  B. Fung,et al.  Fluorine-19 relaxation study of perfluoro chemicals as oxygen carriers , 1983 .

[116]  A. J. Shaka,et al.  An improved sequence for broadband decoupling: WALTZ-16 , 1983 .

[117]  W. Perman,et al.  Spatially resolved high resolution spectroscopy by “four-dimensional” NMR , 1983 .

[118]  J. Kovach,et al.  Pharmacokinetics of anticancer agents in humans , 1983 .

[119]  J. Armand,et al.  Detection of fluoropyrimidines and their metabolites in biological samples by fluorine-19 NMR: application to 5'-deoxy-5-fluorouridine. , 1983, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[120]  Jerry D. Glickson,et al.  31P NMR spectroscopy of in vivo tumors , 1982 .

[121]  A. Wyrwicz,et al.  Nuclear magnetic resonance studies on circulating blood , 1982 .

[122]  R. Chlebowski,et al.  Dosimetry and preliminary human studies of 18F-5-fluorouracil. , 1982, International journal of nuclear medicine and biology.

[123]  R. Gillies,et al.  In vivo carbon-13 nuclear magnetic resonance studies of mammals. , 1981, Science.

[124]  R. Freeman,et al.  Composite pulse decoupling , 1981 .

[125]  C. Myers The pharmacology of the fluoropyrimidines. , 1981, Pharmacological reviews.

[126]  R. Dedrick,et al.  Nonlinear pharmacokinetic models for 5‐fluorouracil in man: Intravenous and intraperitoneal routes , 1980, Clinical pharmacology and therapeutics.

[127]  Paul C. Lauterbur,et al.  31P spectroscopic zeugmatography of phosphorus metabolites , 1980 .

[128]  D. Wilkie,et al.  Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. , 1980, The Journal of physiology.

[129]  D. Gadian,et al.  Mapping of metabolites in whole animals by 31P NMR using surface coils , 1980, Nature.

[130]  W. Sadee,et al.  Pharmacokinetics of 5-Fluorouracil: Inter-relationship with Biochemical Kinetics in Monitoring Therapy , 1977, Clinical pharmacokinetics.

[131]  Paul A. Bottomley,et al.  19F magnetic resonance imaging , 1977 .

[132]  R. Byrd,et al.  19F nuclear magnetic resonance investigation of the ternary complex formed between native thymidylate synthetase, 5-fluoro-2'-deoxyuridylate, and 5,10-methylenetetrahydrofolate. , 1977, Journal of the American Chemical Society.

[133]  Raj K. Gupta A new look at the method of variable nutation angle for the measurement of spin-lattice relaxation times using fourier transform NMR , 1977 .

[134]  W. Dietrich,et al.  Neues Verfahren zur Bestimmung der longitudinalen Relaxationszeit in der Kernresonanzspektroskopie , 1976 .

[135]  Paul C. Lauterbur,et al.  Zeugmatographic high resolution nuclear magnetic resonance spectroscopy. Images of chemical inhomogeneity within macroscopic objects , 1975 .

[136]  John G. Wagner,et al.  Fundamentals of Clinical Pharmacokinetics , 1975 .

[137]  B. Sykes,et al.  Dipolar nuclear spin relaxation of 19F in multispin systems. Application to 19F labeled proteins , 1975 .

[138]  David M. Grant,et al.  Optimal determination of relaxation times of fourier transform nuclear magnetic resonance. Determination of spin-lattice relaxation times in chemically polarized species , 1974 .

[139]  L. Sheiner,et al.  Modelling of individual pharmacokinetics for computer-aided drug dosage. , 1972, Computers and biomedical research, an international journal.

[140]  J. Waugh Sensitivity in Fourier transform NMR spectroscopy of slowly relaxing systems , 1970 .

[141]  C. Heidelberger,et al.  Studies on fluorinated pyrimidines. IX. The degradation of 5-fluorouracil-6-C14. , 1960, The Journal of biological chemistry.

[142]  K. Merten [On the planning of the pharmacal supply]. , 1960, Pharmazeutische Praxis.

[143]  C. Heidelberger,et al.  Fluorinated Pyrimidines, A New Class of Tumour-Inhibitory Compounds , 1957, Nature.

[144]  I. Solomon Relaxation Processes in a System of Two Spins , 1955 .

[145]  W. C. Dickinson Dependence of the F$sup 19$ Nuclear Resonance Position on Chemical Compound , 1950 .