Multitude of bivariate t distributions

Bivariate t distributions have attracted somewhat limited attention of researchers for the last 70 years in spite of their increasing importance in classical as well as in Bayesian statistical modeling. These distributions have been perhaps unjustly overshadowed – during all these years – by the bivariate normal distribution. In this paper, we provide a comprehensive review of the known bivariate t distributions with the hope of encouraging further research activities in this area.

[1]  N. L. Johnson,et al.  Continuous Multivariate Distributions: Models and Applications , 2005 .

[2]  Arjun K. Gupta Multivariate skew t-distribution , 2003 .

[3]  S. Sahu,et al.  A new class of multivariate skew distributions with applications to bayesian regression models , 2003 .

[4]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[5]  A. Azzalini,et al.  Graphical models for skew-normal variates , 2003 .

[6]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[7]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[8]  M. C. Jones Marginal Replacement in Multivariate Densities, with Application to Skewing Spherically Symmetric Distributions , 2002 .

[9]  M. C. Jones A dependent bivariate t distribution with marginals on different degrees of freedom , 2002 .

[10]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[11]  R. Strawderman Continuous Multivariate Distributions, Volume 1: Models and Applications , 2001 .

[12]  Narayanaswamy Balakrishnan,et al.  Probability and Statistical Models with Applications , 2000 .

[13]  Chris Jones,et al.  A skew t distribution , 2000 .

[14]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[15]  A. Kottas,et al.  Bivariate Distributions with Pearson Type VII Conditionals , 1999 .

[16]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[17]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[18]  R. Arellano-Valle,et al.  On some characterizations of the t-distribution , 1995 .

[19]  The centered normal conditionals distribution , 1995 .

[20]  P. L. Iglesias,et al.  A predictivistic interpretation of the multivariatet distribution , 1994 .

[21]  Donald R. Jensen,et al.  Closure of multivariate t and related distributions , 1994 .

[22]  H. S. Steyn On the problem of more than one Kurtosis parameter in multivariate analysis , 1993 .

[23]  Estimation and hypothesis testing for a new family of bivariate nonnormal distributions , 1992 .

[24]  A. W. Kemp,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1991 .

[25]  Centered distributions with cauchy conditionals , 1991 .

[26]  P. S. Gill,et al.  Inference problems in life testing under multivariate normality , 1990 .

[27]  E. Castillo,et al.  Bivariate distributions with second kind beta conditionals , 1990 .

[28]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[29]  B. Arnold,et al.  Compatible Conditional Distributions , 1989 .

[30]  Modified maximum likelihood estimators for the bivariate normal based on type II censored samples , 1989 .

[31]  Mark E. Johnson Multivariate Statistical Simulation: Johnson/Multivariate , 1987 .

[32]  B. Sutradhar On the characteristic function of multivariate Student t‐distribution , 1986 .

[33]  Arjun K. Gupta,et al.  On matric variate-T distribution , 1985 .

[34]  N. Mann Optimal Outlier Tests for a Weibull Model - To Identify Process Changes or to Predict Failure Times , 1981 .

[35]  A. Dawid Some matrix-variate distribution theory: Notational considerations and a Bayesian application , 1981 .

[36]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[37]  Ingram Olkin,et al.  Majorization in Multivariate Distributions , 1974 .

[38]  R. Dykstra,et al.  A Bivariate t-Distribution with Applications , 1974 .

[39]  S. J. Press,et al.  Applied Multivariate Analysis. , 1973 .

[40]  W. Y. Tan,et al.  On the complex analogue of Bayesian estimation of a multivariate regression model , 1973 .

[41]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[42]  Marakatha Krishnan Series Representations of a Bivariate Singly Noncentral t-Distribution , 1972 .

[43]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[44]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[45]  Kanti V. Mardia,et al.  Families of Bivariate Distributions , 1970 .

[46]  S. A. Patil,et al.  The Distribution of the Ratios of Means to the Square Root of the Sum of Variances of a Bivariate Normal Sample , 1970 .

[47]  W. Tan Note on the Multivariate and the Generalized Multivariate Beta Distributions , 1969 .

[48]  K. Miller Some Multivariate $t$-Distributions , 1968 .

[49]  D. E. Amos,et al.  A Note on Representations of the Doubly Non-Central t Distribution , 1968 .

[50]  Marakatha Krishnan Series Representations of the Doubly Noncentral t-Distribution , 1968 .

[51]  Marakatha Krishnan The Noncentral Bivariate Chi Distribution , 1967 .

[52]  James M. Dickey,et al.  Matricvariate Generalizations of the Multivariate $t$ Distribution and the Inverted Multivariate $t$ Distribution , 1967 .

[53]  Marakatha Krishnan,et al.  The Moments of a Doubly Noncentral t-Distribution , 1967 .

[54]  M. M. Siddiqui A Bivariate $t$ Distribution , 1967 .

[55]  D. B. Owen,et al.  A special case of a bivariate non-central t-distribution , 1965 .

[56]  J. Kiefer,et al.  Admissible Bayes Character of $T^2-, R^2-$, and Other Fully Invariant Tests for Classical Multivariate Normal Problems , 1965 .

[57]  S. Geisser BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS , 1965 .

[58]  Michel Loève,et al.  Probability Theory I , 1977 .

[59]  S. Geisser,et al.  Posterior Distributions for Multivariate Normal Parameters , 1963 .

[60]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[61]  A. Kshirsagar,et al.  Some Extensions of the Multivariate t-Distribution and the Multivariate Generalization of the Distribution of the Regression Coefficient , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[62]  R. Wooding The multivariate distribution of complex normal variables , 1956 .

[63]  Ea Coornish,et al.  The Multivariate t-Distribution Associated with a Set of Normal Sample Deviates , 1954 .

[64]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[65]  C. Dunnett,et al.  A BIVARIATE GENERALIZATION OF STUDENT'S t-DISTRIBUTION, WITH TABLES FOR CERTAIN SPECIAL CASES , 1954 .

[66]  H. Robbins The Distribution of Student's $t$ When the Population Means are Unequal , 1948 .

[67]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[68]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[69]  Karl Pearson,et al.  ON NON-SKEW FREQUENCY SURFACES , 1923 .