Some ancestors of contraction analysis
暂无分享,去创建一个
[1] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.
[2] Philip M. Morse,et al. Methods of Mathematical Physics , 1947, The Mathematical Gazette.
[3] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[4] D. C. Lewis. Metric Properties of Differential Equations , 1949 .
[5] C. Lanczos. The variational principles of mechanics , 1949 .
[6] D. C. Lewis. Differential Equations Referred to a Variable Metric , 1951 .
[7] Acknowledgement: On Stability in the Large for Periodic Solutions of Differential Systems , 1958 .
[8] G. Seifert,et al. ON STABILITY IN THE LARGE FOR PERIODIC SOLUTION OF DIFFERENTIAL SYSTEMS , 1958 .
[9] Sur les solutions périodiques et presque-périodiques de l'équation différentielle x'' + kf(x)x' + g(x) = kp(t) , 1960 .
[10] Z. Opial. Sur la stabilité asymptotique des solutions d'un système d'équations différentielles , 1960 .
[11] P. Hartman. On Stability in the Large for Systems of Ordinary Differential Equations , 1961, Canadian Journal of Mathematics.
[12] Sur l'existence des solutions périodiques de l'équation différentielle x'' + f(x,x')x' + g(x) = p(t) , 1961 .
[13] R. Aris. Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .
[14] W. Rudin. Principles of mathematical analysis , 1964 .
[15] W. Wolovich. On the stabilization of controllable systems , 1968 .
[16] B. Jeffreys. The variational principles of mechanics (4th edition), by Cornelius Lanczos. Pp xxix, 418. £4·50. 1970 (University of Toronto Press) , 1973, The Mathematical Gazette.
[17] David Lovelock,et al. Tensors, differential forms, and variational principles , 1975 .
[18] C. M. Place,et al. Ordinary Differential Equations , 1982 .
[19] J. Slotine,et al. On metric observers for nonlinear systems , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.
[20] Jean-Jacques E. Slotine,et al. Applications of metric observers for nonlinear systems , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.
[21] Jean-Jacques E. Slotine,et al. On Contraction Analysis for Non-linear Systems , 1998, Autom..
[22] Alessandro Giua,et al. Observer-controller design for cranes via Lyapunov equivalence , 1999, at - Automatisierungstechnik.
[23] Jean-Jacques E. Slotine,et al. On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .
[24] Jean-Jacques E. Slotine,et al. Nonlinear process control using contraction theory , 2000 .
[25] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[26] Jean-Jacques E. Slotine,et al. Modular stability tools for distributed computation and control , 2003 .
[27] J. Jouffroy. A simple extension of contraction theory to study incremental stability properties , 2003, 2003 European Control Conference (ECC).
[28] L. M. Albright. Vectors , 2003, Current protocols in molecular biology.
[29] Jean-Jacques E. Slotine,et al. A Study of Synchronization and Group Cooperation Using Partial Contraction Theory , 2004 .
[30] Jean-Jacques E. Slotine,et al. Methodological remarks on contraction theory , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[31] Jean-Jacques E. Slotine,et al. On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.
[32] C. Hirsch. The Basic Equations of Fluid Dynamics , 2007 .