Some ancestors of contraction analysis

Contraction analysis is a recent tool for analyzing the convergence behavior of nonlinear systems in state-space form (see Lohmiller and Slotine [16] for the main reference). However, it seems that earlier results derived by mathematicians in the 1950s closely match some of the results of contraction analysis. In this paper, we review and place into perspective some references of this era, and relate them with contraction.

[1]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[2]  Philip M. Morse,et al.  Methods of Mathematical Physics , 1947, The Mathematical Gazette.

[3]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[4]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[5]  C. Lanczos The variational principles of mechanics , 1949 .

[6]  D. C. Lewis Differential Equations Referred to a Variable Metric , 1951 .

[7]  Acknowledgement: On Stability in the Large for Periodic Solutions of Differential Systems , 1958 .

[8]  G. Seifert,et al.  ON STABILITY IN THE LARGE FOR PERIODIC SOLUTION OF DIFFERENTIAL SYSTEMS , 1958 .

[9]  Sur les solutions périodiques et presque-périodiques de l'équation différentielle x'' + kf(x)x' + g(x) = kp(t) , 1960 .

[10]  Z. Opial Sur la stabilité asymptotique des solutions d'un système d'équations différentielles , 1960 .

[11]  P. Hartman On Stability in the Large for Systems of Ordinary Differential Equations , 1961, Canadian Journal of Mathematics.

[12]  Sur l'existence des solutions périodiques de l'équation différentielle x'' + f(x,x')x' + g(x) = p(t) , 1961 .

[13]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[14]  W. Rudin Principles of mathematical analysis , 1964 .

[15]  W. Wolovich On the stabilization of controllable systems , 1968 .

[16]  B. Jeffreys The variational principles of mechanics (4th edition), by Cornelius Lanczos. Pp xxix, 418. £4·50. 1970 (University of Toronto Press) , 1973, The Mathematical Gazette.

[17]  David Lovelock,et al.  Tensors, differential forms, and variational principles , 1975 .

[18]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[19]  J. Slotine,et al.  On metric observers for nonlinear systems , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[20]  Jean-Jacques E. Slotine,et al.  Applications of metric observers for nonlinear systems , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[21]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[22]  Alessandro Giua,et al.  Observer-controller design for cranes via Lyapunov equivalence , 1999, at - Automatisierungstechnik.

[23]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .

[24]  Jean-Jacques E. Slotine,et al.  Nonlinear process control using contraction theory , 2000 .

[25]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[26]  Jean-Jacques E. Slotine,et al.  Modular stability tools for distributed computation and control , 2003 .

[27]  J. Jouffroy A simple extension of contraction theory to study incremental stability properties , 2003, 2003 European Control Conference (ECC).

[28]  L. M. Albright Vectors , 2003, Current protocols in molecular biology.

[29]  Jean-Jacques E. Slotine,et al.  A Study of Synchronization and Group Cooperation Using Partial Contraction Theory , 2004 .

[30]  Jean-Jacques E. Slotine,et al.  Methodological remarks on contraction theory , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[31]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[32]  C. Hirsch The Basic Equations of Fluid Dynamics , 2007 .