Rings whose class of projective modules is socle fine
暂无分享,去创建一个
[1] Abdelouahab Idelhadj,et al. Nouvelles caracterisations des v-anneaux et des anneaux pseudo-frobeniusiens 1 , 1995 .
[2] Yiqiang Zhou,et al. Direct sums of quasi-injective modules, injective covers, and natural classes , 1994 .
[3] Saad H. Mohamed,et al. Continuous and Discrete Modules , 1990 .
[4] Sergio R. López-Permouth,et al. Rings whose cyclics are essentially embeddable in projective modules , 1990 .
[5] S. Rizvi. Commutative rings for which every continuous module is quasi-injective , 1988 .
[6] F. Kasch,et al. Modules and rings , 1982 .
[7] Carl Faith,et al. Algebra II: Ring Theory , 1976 .
[8] H. Schwetlick. Wilkinson, J. H. and C. Reinsch, Linear Algebra. (Die Grundlehren der mathematischen Wissenschaften, Band 186). X + 439 S. m. 4 Fig. Vol. II. Berlin/Heidelberg/New York 1971. Springer‐Verlag. Preis geb. DM 72,— , 1975 .
[9] Frank W. Anderson,et al. Rings and Categories of Modules , 1974 .
[10] A. Koehler. QUASI-PROJECTIVE COVERS AND DIRECT SUMS , 1970 .
[11] J. Golan. Characterization of rings using quasiprojective modules , 1970 .
[12] M. Harada. Note on quasi-injective modules , 1965 .
[13] H. Bass. Finitistic dimension and a homological generalization of semi-primary rings , 1960 .
[14] N. Jacobson. Structure of rings , 1956 .
[15] I. Kaplansky. Modules over Dedekind rings and valuation rings , 1952 .