Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface.

Carbon dioxide electroreduction offers the possibility of producing hydrocarbon fuels using energy from renewable sources. Herein, we use density functional theory to analyze the feasibility of CO2 electroreduction on a Fe(100) surface. Experimentally, iron is nonselective for hydrocarbon formation. A simplistic analysis of low-coverage reaction intermediate energies for the paths to produce CH4 and CH3OH from CO2 suggests Fe(100) could be more active than Cu(111), currently the only metallic catalyst to show selectivity towards hydrocarbon formation. We consider a series of impediments to CO2 electroreduction on Fe(100) including O*/OH* (* denotes surface bound species) blockage of active surface sites; competitive adsorption effects of H*, CO* and C*; and iron carbide formation. Our results indicate that under CO2 electroreduction conditions, Fe(100) is predicted to be covered in C* or CO* species, blocking any C-H bond formation. Further, bulk Fe is predicted to be unstable relative to FeCx formation at potentials relevant to CO2 electroreduction conditions.

[1]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[2]  Linus Pauling,et al.  The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1941, Nature.

[3]  Y. Hori,et al.  Adsorption of CO, intermediately formed in electrochemical reduction of CO2, at a copper electrode , 1991 .

[4]  Andrew A. Peterson,et al.  Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts , 2012 .

[5]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[6]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[7]  T. Riedel,et al.  Fischer–Tropsch on Iron with H2/CO and H2/CO2 as Synthesis Gases: The Episodes of Formation of the Fischer–Tropsch Regime and Construction of the Catalyst , 2003 .

[8]  E. Iglesia,et al.  Pathways for CO2 Formation and Conversion During Fischer–Tropsch Synthesis on Iron-Based Catalysts , 2002 .

[9]  F. Williams,et al.  K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst's active phase , 2010 .

[10]  D. Lowy,et al.  Electrochemical reduction of carbon dioxide on flat metallic cathodes , 1997 .

[11]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[12]  I. Chorkendorff,et al.  CO2 Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211) , 2013 .

[13]  A. Asthagiri,et al.  Selectivity of CO(2) reduction on copper electrodes: the role of the kinetics of elementary steps. , 2013, Angewandte Chemie.

[14]  B. Conway,et al.  Determination of the adsorption behaviour of ‘overpotential-deposited’ hydrogen-atom species in the cathodic hydrogen-evolution reaction by analysis of potential-relaxation transients , 1985 .

[15]  Tadjeddine,et al.  Vibrational spectroscopy of electrochemically deposited hydrogen on platinum. , 1994, Physical review letters.

[16]  C. Buess-Herman,et al.  Electroreduction of Carbon Dioxide on Copper-Based Electrodes: Activity of Copper Single Crystals and Copper–Gold Alloys , 2012, Electrocatalysis.

[17]  I. Snook,et al.  Density functional theory study of the relaxation and energy of iron surfaces , 2002 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[20]  M. Pijolat,et al.  Characterization by Moessbauer spectroscopy of iron carbides formed by Fischer-Tropsch synthesis , 1982 .

[21]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[22]  Wang,et al.  Theory of magnetic and structural ordering in iron. , 1985, Physical review letters.

[23]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[24]  J. Snyman,et al.  Identification of Eckstrom-Adcock Iron Carbide as Fe7C3 , 1964 .

[25]  Chunshan Song,et al.  Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons , 2013 .

[26]  K. Pitzer,et al.  The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. , 1960 .

[27]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[28]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[29]  J. Niemantsverdriet,et al.  Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements , 1980 .

[30]  J. J. Retief Powder diffraction data and Rietveld refinement of Hägg-carbide, χ-Fe5C2 , 1999, Powder Diffraction.

[31]  K. Hara,et al.  Electrochemical reduction of high pressure carbon dioxide on Fe electrodes at large current density , 1995 .

[32]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[33]  J. Niemantsverdriet,et al.  A density functional theory study on the effect of zero-point energy corrections on the methanation profile on Fe(100). , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[35]  Y. Hori,et al.  Electrochemical Reduction of Carbon Monoxide to Hydrocarbons at Various Metal Electrodes in Aqueous Solution , 1987 .

[36]  D. Fruchart,et al.  Etudes structurales de compose´s de type ce´mentite: Effet de l'hydroge`ne sur Fe3C suivi par diffraction neutronique. Spectrome´trie Mo¨ssbauer sur FeCo2B et Co3B dope´s au57Fe , 1984 .

[37]  Hans Schulz,et al.  Selectivity and mechanism of Fischer-Tropsch synthesis with iron and cobalt catalysts , 1994 .

[38]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[39]  Frederick W. Williams,et al.  Heterogeneous catalytic CO2 conversion to value-added hydrocarbons , 2010 .

[40]  Y. Hu Advances in CO2 conversion and utilization , 2010 .

[41]  Hans Schulz,et al.  Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts , 1999 .

[42]  J. Gracia,et al.  Mars-van Krevelen-like Mechanism of CO Hydrogenation on an Iron Carbide Surface , 2009 .

[43]  A. Beale,et al.  Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C). , 2010, Journal of the American Chemical Society.

[44]  W. Marsden I and J , 2012 .

[45]  S. Ishimaru,et al.  Pulsed Electroreduction of CO 2 on Cu‐Ag Alloy Electrodes , 2000 .

[46]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[47]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[48]  J. Butt,et al.  Iron alloy Fischer-Tropsch catalysts: III. Conversion dependence of selectivity and water-gas shift , 1981 .

[49]  Akira Murata,et al.  Electrochemical evidence of intermediate formation of adsorbed CO in cathodic reduction of CO2 at a nickel electrode , 1990 .

[50]  M. Dry,et al.  Fischer-Tropsch synthesis over iron catalysts , 1990 .

[51]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.