Subdivision Surfaces for CAD
暂无分享,去创建一个
[1] Malcolm Sabin,et al. Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.
[2] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[3] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[4] Scott Schaefer,et al. A factored approach to subdivision surfaces , 2004, IEEE Computer Graphics and Applications.
[5] Ulf Labsik,et al. Interpolatory √3‐Subdivision , 2000 .
[6] Ahmad H. Nasri,et al. Interpolating meshes of boundary intersecting curves by subdivision surfaces , 2000, The Visual Computer.
[7] D. Zorin,et al. 4-8 Subdivision , 2001 .
[8] Tony DeRose,et al. Subdivision surfaces in character animation , 1998, SIGGRAPH.
[9] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[10] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[11] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[12] Peter Schröder,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..
[13] M. A. Sabin,et al. Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.
[14] Jean Schweitzer,et al. Analysis and application of subdivision surfaces , 1996 .
[15] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[16] Denis Zorin,et al. A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..
[17] Jos Stam,et al. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..
[18] D. Zorin,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .
[19] Jörg Peters,et al. The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.
[20] Weiyin Ma,et al. Smooth multiple B-spline surface fitting with Catmull%ndash;Clark subdivision surfaces for extraordinary corner patches , 2002, The Visual Computer.
[21] Malcolm Sabin,et al. Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[22] Peter Schröder,et al. Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..
[23] Hujun Bao,et al. Interpolatory v2-Subdivision Surfaces , 2004, GMP.
[24] H. Ehlers. LECTURERS , 1948, Statistics for Astrophysics.
[25] Tony DeRose,et al. Piecewise smooth surface reconstruction , 1994, SIGGRAPH.
[26] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[27] G. Umlauf. Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .
[28] Malcolm A. Sabin,et al. Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.
[29] A. A. Ball,et al. Recursively generated B-spline surfaces , 1984 .
[30] J. Peters,et al. Analysis of Algorithms Generalizing B-Spline Subdivision , 1998 .
[31] H. Bao,et al. Interpolatory /spl radic/2-subdivision surfaces , 2004, Geometric Modeling and Processing, 2004. Proceedings.
[32] A. A. Ball,et al. Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.
[33] Hujun Bao,et al. √2 Subdivision for quadrilateral meshes , 2004, The Visual Computer.
[34] Henning Biermann,et al. Sharp features on multiresolution subdivision surfaces , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.
[35] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[36] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[37] Denis Z orin. Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .
[38] George Merrill Chaikin,et al. An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..
[39] I. Daubechies,et al. Regularity of Irregular Subdivision , 1999 .