Molecular electrometer and binding of cations to phospholipid bilayers.

Despite the vast amount of experimental and theoretical studies on the binding affinity of cations - especially the biologically relevant Na+ and Ca2+ - for phospholipid bilayers, there is no consensus in the literature. Here we show that by interpreting changes in the choline headgroup order parameters according to the 'molecular electrometer' concept [Seelig et al., Biochemistry, 1987, 26, 7535], one can directly compare the ion binding affinities between simulations and experiments. Our findings strongly support the view that in contrast to Ca2+ and other multivalent ions, Na+ and other monovalent ions (except Li+) do not specifically bind to phosphatidylcholine lipid bilayers at sub-molar concentrations. However, the Na+ binding affinity was overestimated by several molecular dynamics simulation models, resulting in artificially positively charged bilayers and exaggerated structural effects in the lipid headgroups. While qualitatively correct headgroup order parameter response was observed with Ca2+ binding in all the tested models, no model had sufficient quantitative accuracy to interpret the Ca2+:lipid stoichiometry or the induced atomistic resolution structural changes. All scientific contributions to this open collaboration work were made publicly, using nmrlipids.blogspot.fi as the main communication platform.

[1]  O. H. S. Ollila,et al.  Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. , 2016, Biochimica et biophysica acta.

[2]  A. Aksimentiev,et al.  Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields , 2016, Biopolymers.

[3]  P. Kinnunen,et al.  Acyl Chain Disorder and Azelaoyl Orientation in Lipid Membranes Containing Oxidized Lipids. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[4]  M. Javanainen POPC @ 310K, 450 mM of CaCl_2. Charmm36 with default Charmm ions , 2016 .

[5]  Josef Melcr Simulation files for POPC lipid membrane with Slipids-VIS force field for Gromacs MD simulation engine , 2016 .

[6]  Pavel Jungwirth,et al.  Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. , 2016, The journal of physical chemistry. B.

[7]  M. Javanainen POPC @ 310K, 450 mM of CaCl_2. Slipids with ECC-scaled ions , 2016 .

[8]  M. Javanainen POPC @ 310K, 450 mM of CaCl_2. Charmm36 with ECC-scaled ions , 2016 .

[9]  M. Javanainen POPC @ 310K, 130 mM of NaCl. Slipids with ions by Smith & Dang , 2015 .

[10]  O. H. S. Ollila,et al.  MD simulation trajectory for POPC bilayer (Orange, Gromacs 4.5.) , 2015 .

[11]  O. H. S. Ollila,et al.  MD simulation trajectory for POPC bilayer with 510mM CaCl_2 (Orange, Gromacs 4.5.) , 2015 .

[12]  A. Lyubartsev,et al.  Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions , 2015, The journal of physical chemistry. B.

[13]  Samuli Ollila MD simulation trajectory and related files for POPC bilayer with 670mM CaCl_2 (CHARMM36, Gromacs 4.5) , 2015 .

[14]  Ollila O. H. Samuli MD simulation trajectory and related files for POPC bilayer with 340mM CaCl_2 (Berger model delivered by Tieleman, ffgmx ions, Gromacs 4.5) , 2015 .

[15]  I. Vattulainen,et al.  N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes , 2015, Proceedings of the National Academy of Sciences.

[16]  M. Javanainen,et al.  POPC @ 310K, varying amounts of NaCl. Model by Maciejewski and Rog , 2015 .

[17]  H. Santuz MD simulation trajectory and related files for POPC bilayer (CHARMM36, Gromacs 4.5) , 2015 .

[18]  M. Javanainen POPC @ 310K, Slipids force field. , 2015 .

[19]  M. Javanainen POPC @ 310K, varying water-to-lipid ratio. Model by Maciejewski and Rog , 2014 .

[20]  Ollila O. H. Samuli,et al.  MD simulation trajectory and related files for POPC bilayer (Berger model delivered by Tieleman, Gromacs 4.5) , 2014 .

[21]  Miriam Kohagen,et al.  Accurate description of calcium solvation in concentrated aqueous solutions. , 2014, The journal of physical chemistry. B.

[22]  Ilpo Vattulainen,et al.  Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration. , 2014, The journal of physical chemistry. B.

[23]  Benjamin D. Madej,et al.  Lipid14: The Amber Lipid Force Field , 2014, Journal of chemical theory and computation.

[24]  B. Roux,et al.  Simulations of anionic lipid membranes: development of interaction-specific ion parameters and validation using NMR data. , 2013, The journal of physical chemistry. B.

[25]  F. Harb,et al.  Effect of ionic strength on dynamics of supported phosphatidylcholine lipid bilayer revealed by FRAPP and Langmuir-Blodgett transfer ratios. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[26]  V. Knecht,et al.  Specific binding of chloride ions to lipid vesicles and implications at molecular scale. , 2013, Biophysical journal.

[27]  Anton Arkhipov,et al.  Architecture and Membrane Interactions of the EGF Receptor , 2013, Cell.

[28]  Chris Oostenbrink,et al.  Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins , 2013, Journal of chemical theory and computation.

[29]  Alexander P Lyubartsev,et al.  An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. , 2012, Journal of chemical theory and computation.

[30]  Alexander P. Lyubartsev,et al.  Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids , 2012, The journal of physical chemistry. B.

[31]  M. Berkowitz,et al.  Aqueous solutions at the interface with phospholipid bilayers. , 2012, Accounts of chemical research.

[32]  I. Vattulainen,et al.  Cationic dimyristoylphosphatidylcholine and dioleoyloxytrimethylammonium propane lipid bilayers: atomistic insight for structure and dynamics. , 2012, The journal of physical chemistry. B.

[33]  F. Sanz,et al.  Force spectroscopy reveals the effect of different ions in the nanomechanical behavior of phospholipid model membranes: the case of potassium cation. , 2012, Biophysical journal.

[34]  Jason D. Perlmutter,et al.  NaCl Interactions with Phosphatidylcholine Bilayers Do Not Alter Membrane Structure but Induce Long-Range Ordering of Ions and Water , 2011, The Journal of Membrane Biology.

[35]  S. Jarvis,et al.  Direct imaging of salt effects on lipid bilayer ordering at sub-molecular resolution , 2011, European Biophysics Journal.

[36]  A. Stuchebrukhov,et al.  Accounting for electronic polarization in non-polarizable force fields. , 2011, Physical chemistry chemical physics : PCCP.

[37]  R. Lipowsky,et al.  Interactions of alkali metal chlorides with phosphatidylcholine vesicles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[38]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[39]  I. Vattulainen,et al.  Ion dynamics in cationic lipid bilayer systems in saline solutions. , 2009, The journal of physical chemistry. B.

[40]  O. Edholm,et al.  Effect of Force Field Parameters on Sodium and Potassium Ion Binding to Dipalmitoyl Phosphatidylcholine Bilayers. , 2009, Journal of chemical theory and computation.

[41]  M. Berkowitz,et al.  Effects of alkali cations and halide anions on the DOPC lipid membrane. , 2009, The journal of physical chemistry. A.

[42]  G. Lindblom,et al.  Effect of NaCl and CaCl(2) on the lateral diffusion of zwitterionic and anionic lipids in bilayers. , 2009, Chemistry and physics of lipids.

[43]  M. Ulmschneider,et al.  United Atom Lipid Parameters for Combination with the Optimized Potentials for Liquid Simulations All-Atom Force Field. , 2009, Journal of chemical theory and computation.

[44]  E. Leontidis,et al.  Liquid expanded monolayers of lipids as model systems to understand the anionic hofmeister series: 2. Ion partitioning is mostly a matter of size. , 2009, The journal of physical chemistry. B.

[45]  Arnau Cordomí,et al.  Effect of ions on a dipalmitoyl phosphatidylcholine bilayer. a molecular dynamics simulation study. , 2008, The journal of physical chemistry. B.

[46]  G. Pabst,et al.  Rigidification of neutral lipid bilayers in the presence of salts. , 2007, Biophysical journal.

[47]  R. Pappu,et al.  Parameters of monovalent ions in the AMBER-99 forcefield: assessment of inaccuracies and proposed improvements. , 2007, The journal of physical chemistry. B.

[48]  K. Fendler,et al.  Specific anion and cation binding to lipid membranes investigated on a solid supported membrane. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[49]  S. Jarvis,et al.  Direct imaging of lipid-ion network formation under physiological conditions by frequency modulation atomic force microscopy. , 2007, Physical review letters.

[50]  I. Vattulainen,et al.  Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. , 2007, The journal of physical chemistry. B.

[51]  F. Sanz,et al.  Effect of pH and ionic strength on phospholipid nanomechanics and on deposition process onto hydrophilic surfaces measured by AFM , 2006 .

[52]  Berk Hess,et al.  Osmotic coefficients of atomistic NaCl (aq) force fields. , 2006, The Journal of chemical physics.

[53]  Sagar A. Pandit,et al.  Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. , 2006, Chemical reviews.

[54]  I. Vattulainen,et al.  Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[55]  F. Sanz,et al.  Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. , 2005, Biophysical journal.

[56]  T. Woolf,et al.  Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations. , 2004, Biophysical journal.

[57]  Helmut Grubmüller,et al.  Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study. , 2004, Angewandte Chemie.

[58]  Helmut Grubmüller,et al.  Effect of sodium chloride on a lipid bilayer. , 2003, Biophysical journal.

[59]  O. Zschörnig,et al.  The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. , 2002, Chemistry and physics of lipids.

[60]  C. Lüpfert,et al.  Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. , 1999, Biophysical journal.

[61]  F. Winnik,et al.  Destabilization of cationic lipid vesicles by an anionic hydrophobically modified poly(N-isopropylacrylamide) copolymer: a solid-state 31P NMR and 2H NMR study. , 1998, Biochimica et biophysica acta.

[62]  O. Berger,et al.  Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. , 1998, Biophysical journal.

[63]  B. Roux,et al.  Valence selectivity of the gramicidin channel: a molecular dynamics free energy perturbation study. , 1996, Biophysical journal.

[64]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[65]  D. Nanz,et al.  Study of phospholipid structure by 1H, 13C, and 31P dipolar couplings from two-dimensional NMR. , 1995, Biophysical journal.

[66]  A. Pines,et al.  NMR Measurement of Signs and Magnitudes of C-H Dipolar Couplings in Lecithin , 1995 .

[67]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[68]  David E. Smith,et al.  Computer simulations of NaCl association in polarizable water , 1994 .

[69]  F. Marassi,et al.  Response of the phosphatidylcholine headgroup to membrane surface charge in ternary mixtures of neutral, cationic, and anionic lipids: a deuterium NMR study. , 1992, Biochemistry.

[70]  P. Macdonald,et al.  Investigation of anion binding to neutral lipid membranes using deuterium NMR , 1992 .

[71]  J. Seelig,et al.  Peptide binding to lipid membranes. Spectroscopic studies on the insertion of a cyclic somatostatin analog into phospholipid bilayers. , 1991, Biochimica et biophysica acta.

[72]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[73]  M. Bloom,et al.  Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR. , 1990, Biochemistry.

[74]  J. Seelig Interaction of phospholipids with Ca2+ ions. On the role of the phospholipid head groups. , 1990, Cell biology international reports.

[75]  J. Teissié,et al.  Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems. , 1990, Biochimica et biophysica acta.

[76]  J. Seelig,et al.  Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. , 1989, Biochemistry.

[77]  T. Straatsma,et al.  Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations , 1988 .

[78]  S. Tatulian Binding of alkaline-earth metal cations and some anions to phosphatidylcholine liposomes. , 1987, European journal of biochemistry.

[79]  J. Seelig,et al.  Phospholipid head groups as sensors of electric charge in membranes. , 1987, Biochemistry.

[80]  J. Seelig,et al.  Calcium binding to mixed phosphatidylglycerol-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance. , 1987, Biochemistry.

[81]  C. Altenbach,et al.  Binding of the lipophilic cation tetraphenylphosphonium to phosphatidylcholine , 1985 .

[82]  L. Herbette,et al.  Direct determination of the calcium profile structure for dipalmitoyllecithin multilayers using neutron diffraction. , 1984, Biophysical journal.

[83]  C. Altenbach,et al.  Ca2+ binding to phosphatidylcholine bilayers as studied by deuterium magnetic resonance. Evidence for the formation of a Ca2+ complex with two phospholipid molecules. , 1984, Biochemistry.

[84]  J. Seelig,et al.  Interaction of metal ions with phosphatidylcholine bilayer membranes. , 1981, Biochemistry.

[85]  S. McLaughlin,et al.  Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. , 1979, Biochemistry.

[86]  H. Hauser,et al.  The conformation of the polar group of lysophosphatidylcholine in H2O: conformational changes induced by polyvalent cations. , 1978, Biochimica et biophysica acta.

[87]  J. Seelig,et al.  Ion-induced changes in head group conformation of lecithin bilayers , 1977, Nature.

[88]  H. Hauser,et al.  Conformation of the lecithin polar group in charged vesicles , 1976, Nature.

[89]  Josef Melcr Simulation files for POPC lipid membrane with Charmm36 force field without NBFIX for Gromacs MD simulation engine , 2016 .

[90]  W. Marsden I and J , 2012 .

[91]  R. Griffin,et al.  Dipolar Recoupling in MAS NMR: A Probe for Segmental Order in Lipid Bilayers , 1997 .