Optimizing plasmonic nanoantennas via coordinated multiple coupling

Plasmonic nanoantennas, which can efficiently convert light from free space into sub-wavelength scale with the local field enhancement, are fundamental building blocks for nanophotonic systems. Predominant design methods, which exploit a single type of near- or far-field coupling in pairs or arrays of plasmonic nanostructures, have limited the tunability of spectral response and the local field enhancement. To overcome this limit, we are developing a general strategy towards exploiting the coordinated effects of multiple coupling. Using Au bowtie nanoantenna arrays with metal-insulator-metal configuration as examples, we numerically demonstrate that coordinated design and implementation of various optical coupling effects leads to both the increased tunability in the spectral response and the significantly enhanced electromagnetic field. Furthermore, we design and analyze a refractive index sensor with an ultra-high figure-of-merit (254), a high signal-to-noise ratio and a wide working range of refractive indices, and a narrow-band near-infrared plasmonic absorber with 100% absorption efficiency, high quality factor of up to 114 and a wide range of tunable wavelength from 800 nm to 1,500 nm. The plasmonic nanoantennas that exploit coordinated multiple coupling will benefit a broad range of applications, including label-free bio-chemical detection, reflective filter, optical trapping, hot-electron generation, and heat-assisted magnetic recording.

[1]  Wenqi Zhu,et al.  Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model. , 2011, Optics express.

[2]  M. Eich,et al.  Perfect narrow-band absorber based on a monolayer of metallodielectric microspheres , 2013 .

[3]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[4]  Jean-Jacques Greffet,et al.  Nanoantennas for Light Emission , 2005, Science.

[5]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[6]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[7]  A. Nikitin Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays , 2014 .

[8]  Wei Zhou,et al.  Plasmonic bowtie nanolaser arrays. , 2012, Nano letters.

[9]  K. Crozier,et al.  Experimental study of the interaction between localized and propagating surface plasmons. , 2009, Optics letters.

[10]  John A Rogers,et al.  Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. , 2011, Nature communications.

[11]  K. Crozier,et al.  Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. , 2010, ACS nano.

[12]  Boris N. Chichkov,et al.  Laser fabrication of large-scale nanoparticle arrays for sensing applications. , 2011, ACS nano.

[13]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[14]  José Miguel García-Martín,et al.  Parallel collective resonances in arrays of gold nanorods. , 2014, Nano letters.

[15]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[16]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[17]  J. Yang,et al.  Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna. , 2014, Nanoscale.

[18]  Duane C. Karns,et al.  Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer , 2009 .

[19]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[20]  K. Crozier,et al.  High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering , 2012, Advanced materials.

[21]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[22]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticles near Metallic Surfaces , 2004 .

[23]  Yasha Yi,et al.  Orthogonal and parallel lattice plasmon resonance in core-shell SiO(2)/Au nanocylinder arrays. , 2015, Optics express.

[24]  Jaime Gómez Rivas,et al.  Universal scaling of the figure of merit of plasmonic sensors. , 2011, ACS nano.

[25]  Jordan A. Katine,et al.  Magnetic recording at 1.5 Pb m −2 using an integrated plasmonic antenna , 2010 .

[26]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[27]  Ming C. Wu,et al.  Radiation engineering of optical antennas for maximum field enhancement. , 2011, Nano letters.

[28]  Zhaowei Liu,et al.  Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging. , 2014, Nanoscale.

[29]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[30]  Yang Yang,et al.  Surface-enhanced Raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments. , 2011, Nano letters.

[31]  Gordon S. Kino,et al.  Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles , 2005 .

[32]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[33]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[34]  R. Bachelot,et al.  Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae. , 2013, The journal of physical chemistry letters.

[35]  Kin Hung Fung,et al.  Nonlinear optical response from arrays of Au bowtie nanoantennas. , 2011, Nano letters.

[36]  Romain Quidant,et al.  Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. , 2005, Optics letters.

[37]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[38]  Jiří Homola,et al.  Sensing properties of lattice resonances of 2D metal nanoparticle arrays: an analytical model. , 2013, Optics express.

[39]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[40]  Yanhui Zhao,et al.  Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. , 2015, Small.

[41]  Koray Aydin,et al.  Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. , 2014, ACS nano.

[42]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[43]  P. Schuck,et al.  Manipulating nano-scale light fields with the Asymmetric Bowtie nano-Colorsorter , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[44]  Susumu Noda,et al.  Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals , 2013 .

[45]  Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: enhanced robustness and wavelength tunability. , 2015, Optics letters.

[46]  Paul S Weiss,et al.  Surface-enhanced Raman spectroscopy to probe photoreaction pathways and kinetics of isolated reactants on surfaces: flat versus curved substrates. , 2012, Nano letters.

[47]  E. Schonbrun,et al.  Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays , 2008 .

[48]  Zhaowei Liu,et al.  From Fano-like interference to superscattering with a single metallic nanodisk. , 2014, Nanoscale.

[49]  S. Bozhevolnyi,et al.  Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons , 2009 .

[50]  Kimani C. Toussaint,et al.  Design, Fabrication, and Characterization of Near-IR Gold Bowtie Nanoantenna Arrays , 2014 .

[51]  Trevor Mudge,et al.  An Analytical Model , 1996 .

[52]  M. Aono,et al.  Moiré Nanosphere Lithography. , 2015, ACS nano.

[53]  Ulrich Hohenester,et al.  Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[54]  N. Papanikolaou,et al.  Optical properties of metallic nanoparticle arrays on a thin metallic film , 2007 .

[55]  Kin Hung Fung,et al.  Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. , 2012, Nano letters.

[56]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[57]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[58]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[59]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[60]  Sergey I. Bozhevolnyi,et al.  Gap-plasmon nanoantennas and bowtie resonators , 2012 .

[61]  Xiang Zhang,et al.  Compact magnetic antennas for directional excitation of surface plasmons. , 2012, Nano letters.

[62]  Guohui Xiao,et al.  Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit , 2013, Nature Communications.

[63]  T. Nagao,et al.  Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions , 2015 .

[64]  Ying-Wei Yang,et al.  Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles. , 2013, Journal of the American Chemical Society.

[65]  P. Royer,et al.  Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[66]  B. K. Juluri,et al.  Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography. , 2011, ACS nano.

[67]  L. Novotný,et al.  Antennas for light , 2011 .