Comparison of 3D local and global descriptors for similarity retrieval of range data

Recent improvements in scanning technologies such as consumer penetration of RGB-D cameras lead obtaining and managing range image databases practical. Hence, the need for describing and indexing such data arises. In this study, we focus on similarity indexing of range data among a database of range objects (range-to-range retrieval) by employing only single view depth information. We utilize feature based approaches both on local and global scales. However, the emphasis is on the local descriptors with their global representations. A comparative study with extensive experimental results is presented. In addition, we introduce a publicly available range object database which is large and has a high diversity that is suitable for similarity retrieval applications. The simulation results indicate competitive performance between local and global methods. While better complexity trade-off can be achieved with the global techniques, local methods perform better in distinguishing different parts of incomplete depth data.

[1]  Dietmar Saupe,et al.  Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics , 2001, 2001 IEEE Fourth Workshop on Multimedia Signal Processing (Cat. No.01TH8564).

[2]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[4]  Thomas A. Funkhouser,et al.  Distinctive regions of 3D surfaces , 2007, TOGS.

[5]  Daniela Giorgi,et al.  Reeb graphs for shape analysis and applications , 2008, Theor. Comput. Sci..

[6]  Markus Vincze,et al.  3DNet: Large-scale object class recognition from CAD models , 2012, 2012 IEEE International Conference on Robotics and Automation.

[7]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[8]  Guillermo Sapiro,et al.  Three-dimensional point cloud recognition via distributions of geometric distances , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[9]  Ryutarou Ohbuchi,et al.  Salient local visual features for shape-based 3D model retrieval , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[10]  Dong Xu,et al.  Geometric moment invariants , 2008, Pattern Recognit..

[11]  Pieter Jonker,et al.  Utilization of spatial information for point cloud segmentation , 2010, 2010 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video.

[12]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[13]  Markus Vincze,et al.  Shape-based depth image to 3D model matching and classification with inter-view similarity , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  U. Hillenbrand,et al.  SHREC 2010 - Shape Retrieval Contest of Range Scans , 2010 .

[15]  Hans-Peter Kriegel,et al.  3D Shape Histograms for Similarity Search and Classification in Spatial Databases , 1999, SSD.

[16]  Ruigang Yang,et al.  Semantic Segmentation of Urban Scenes Using Dense Depth Maps , 2010, ECCV.

[17]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[18]  Dieter Fox,et al.  Depth kernel descriptors for object recognition , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[20]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[21]  Luís A. Alexandre 3D Descriptors for Object and Category Recognition: a Comparative Evaluation , 2012 .

[22]  Balasubramanian Raman,et al.  Computing hierarchical curve-skeletons of 3D objects , 2005, The Visual Computer.

[23]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Maks Ovsjanikov,et al.  Feature-Based Methods in 3D Shape Analysis , 2012, 3D Imaging, Analysis and Applications.

[25]  Daniel A. Keim,et al.  Content-Based 3D Object Retrieval , 2007, IEEE Computer Graphics and Applications.

[26]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[27]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[28]  Marcin Novotni,et al.  3D zernike descriptors for content based shape retrieval , 2003, SM '03.

[29]  Marc Rioux,et al.  Description of shape information for 2-D and 3-D objects , 2000, Signal Process. Image Commun..

[30]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[31]  A. Aydin Alatan,et al.  Lossless description of 3D range models , 2012, Other Conferences.

[32]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[33]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[34]  Mohammed Bennamoun,et al.  3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[36]  Petros Daras,et al.  A Compact Multi-view Descriptor for 3D Object Retrieval , 2009, 2009 Seventh International Workshop on Content-Based Multimedia Indexing.

[37]  Aly A. Farag,et al.  SHREC'13 Track: Retrieval of Objects Captured with Low-Cost Depth-Sensing Cameras , 2013, 3DOR@Eurographics.

[38]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[39]  Dieter Fox,et al.  Unsupervised Feature Learning for RGB-D Based Object Recognition , 2012, ISER.

[40]  Dejan V. VraniC An improvement of rotation invariant 3D-shape based on functions on concentric spheres , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[41]  Chin Seng Chua,et al.  Point Signatures: A New Representation for 3D Object Recognition , 1997, International Journal of Computer Vision.

[42]  Bernt Schiele,et al.  3D object recognition from range images using local feature histograms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[43]  In Kyu Park,et al.  Content-based 3D model retrieval using a single depth image from a low-cost 3D camera , 2013, The Visual Computer.

[44]  Stefan Holzer,et al.  Learning to Efficiently Detect Repeatable Interest Points in Depth Data , 2012, ECCV.

[45]  Jun Wang,et al.  From Low-Cost Depth Sensors to CAD: Cross-Domain 3D Shape Retrieval via Regression Tree Fields , 2014, ECCV.

[46]  Francoise J. Preteux,et al.  3D-shape-based retrieval within the MPEG-7 framework , 2001, IS&T/SPIE Electronic Imaging.

[47]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Kun Liu,et al.  Rotation-Invariant HOG Descriptors Using Fourier Analysis in Polar and Spherical Coordinates , 2014, International Journal of Computer Vision.

[49]  A. Aydin Alatan,et al.  Shape Index SIFT: Range Image Recognition Using Local Features , 2010, 2010 20th International Conference on Pattern Recognition.

[50]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[51]  Ioannis Pratikakis,et al.  PANORAMA: A 3D Shape Descriptor Based on Panoramic Views for Unsupervised 3D Object Retrieval , 2010, International Journal of Computer Vision.

[52]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[53]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[54]  Mohammed Bennamoun,et al.  Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.