Multiphase mean curvature flows with high mobility contrasts: A phase-field approach, with applications to nanowires

Abstract The structure of many multiphase systems is governed by an energy that penalizes the area of interfaces between phases weighted by surface tension coefficients. However, interface evolution laws depend also on interface mobility coefficients. Having in mind some applications where highly contrasted or even degenerate mobilities are involved, for which classical phase field models are inapplicable, we propose a new effective phase field approach to approximate multiphase mean curvature flows with mobilities. The key aspect of our model is to incorporate the mobilities not in the phase field energy (which is conventionally the case) but in the metric which determines the gradient flow. We show the consistency of such an approach by a formal analysis of the sharp interface limit. We also propose an efficient numerical scheme which allows us to illustrate the advantages of the model on various examples, as the wetting of droplets on solid surfaces or the simulation of nanowires growth generated by the so-called vapor–liquid–solid method.

[1]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[2]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[3]  Harald Garcke,et al.  A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  Morton E. Gurtin,et al.  Sharp-interface and phase-field theories of recrystallization in the plane , 1999 .

[5]  Miquel Royo,et al.  A review on III–V core–multishell nanowires: growth, properties, and applications , 2017 .

[6]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[7]  F. Maggi Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory , 2012 .

[8]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[9]  J. Tersoff,et al.  Stable Self-Catalyzed Growth of III-V Nanowires. , 2015, Nano letters.

[10]  Jordi Arbiol,et al.  Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires , 2008 .

[11]  Felix Otto,et al.  Threshold Dynamics for Networks with Arbitrary Surface Tensions , 2015 .

[12]  P. Souganidis,et al.  Threshold dynamics type approximation schemes for propagating fronts , 1999 .

[13]  Xinfu Chen,et al.  Generation and propagation of interfaces for reaction-diffusion equations , 1992 .

[14]  Jeffrey W. Bullard,et al.  Computational and mathematical models of microstructural evolution , 1998 .

[15]  John W. Cahn Theory of Crystal Growth and Interface Motion in Crystalline Materials , 2013 .

[16]  Harald Garcke,et al.  A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions , 1999, SIAM J. Appl. Math..

[17]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[18]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[19]  James A. Warren,et al.  Stability and topological transformations of liquid droplets on vapor-liquid-solid nanowires , 2012 .

[20]  Shiliang Wang,et al.  The Mechanical Properties of Nanowires , 2017, Advanced science.

[21]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[22]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[23]  Philippe Regreny,et al.  Study of the nucleation and growth of InP nanowires on silicon with gold-indium catalyst , 2017 .

[24]  Conyers Herring,et al.  Surface Tension as a Motivation for Sintering , 1999 .

[25]  Harald Garcke,et al.  On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..

[26]  P. Loreti,et al.  Propagation of fronts in a nonlinear fourth order equation , 2000, European Journal of Applied Mathematics.

[27]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[29]  Steven J. Ruuth Eecient Algorithms for Diiusion-generated Motion by Mean Curvature , 1997 .

[30]  G. Bellettini,et al.  Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations , 2014 .

[31]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[32]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[33]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[34]  László Gránásy,et al.  Orientation-field models for polycrystalline solidification: Grain coarsening and complex growth forms , 2017 .

[35]  Morton E. Gurtin,et al.  A phase-field theory for solidification based on a general anisotropic sharp-interface theory with interfacial energy and entropy , 1996 .

[36]  Gilles Patriarche,et al.  Predictive modeling of self-catalyzed III-V nanowire growth , 2013 .

[37]  Paul C. Fife,et al.  Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .

[38]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[39]  Gilles Patriarche,et al.  Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.

[40]  John W. Cahn,et al.  Critical point wetting , 1977 .

[41]  L. Ambrosio,et al.  Geometric evolution problems, distance function and viscosity solutions , 1997 .

[42]  Seunghwa Ryu,et al.  A three-dimensional phase field model for nanowire growth by the vapor–liquid–solid mechanism , 2014 .

[43]  Nan Wang,et al.  Phase-Field Studies of Materials Interfaces , 2011 .

[44]  Jack Xin,et al.  Diffusion-Generated Motion by Mean Curvature for Filaments , 2001, J. Nonlinear Sci..

[45]  J. Rubinstein,et al.  Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[47]  Harald Garcke,et al.  A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[48]  Volker Schmidt,et al.  Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties , 2009, Advanced materials.

[49]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[50]  Eicke R. Weber,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers. , 2001 .

[51]  Xin Guan,et al.  Exploring piezoelectric properties of III–V nanowires using piezo-response force microscopy , 2017 .

[52]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[53]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[54]  Peter W Voorhees,et al.  Early stage phase separation in ternary alloys: A test of continuum simulations , 2016 .

[55]  Wei Jiang,et al.  Phase field approach for simulating solid-state dewetting problems , 2012 .

[56]  É. Oudet,et al.  Phase-field modelling and computing for a large number of phases , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[57]  Gilles Patriarche,et al.  Faceting mechanisms of Si nanowires and gold spreading , 2012, Journal of Materials Science.

[58]  Michel Gendry,et al.  Structure and morphology of Ge nanowires on Si (001): Importance of the Ge islands on the growth direction and twin formation , 2015 .

[59]  Michelle Schatzman,et al.  Geometrical evolution of developed interfaces , 1995, Emerging applications in free boundary problems.

[60]  Hui-Chia Yu,et al.  Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries , 2009, 1107.5341.

[61]  Édouard Oudet,et al.  Approximation of Partitions of Least Perimeter by Γ-Convergence: Around Kelvin’s Conjecture , 2011, Exp. Math..

[62]  Harald Garcke,et al.  On anisotropic order parameter models for multi-phase system and their sharp interface limits , 1998 .

[63]  Ulrich Rüde,et al.  Large scale phase-field simulations of directional ternary eutectic solidification , 2015 .

[64]  L. Bronsard,et al.  On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation , 1993 .

[65]  S. Masnou,et al.  A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics , 2017 .

[66]  Maurizio Paolini,et al.  Quasi-optimal error estimates for the mean curvature flow with a forcing term , 1995, Differential and Integral Equations.

[67]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[68]  François Alouges,et al.  Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model , 2009 .

[69]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[70]  Thomas Young,et al.  An Essay on the Cohesion of Fluids , 1800 .

[71]  G. Bellettini,et al.  Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .

[72]  S. Baldo Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids , 1990 .

[73]  Maurizio Paolini,et al.  Nonconvex mean curvature flow as a formal singular limit of the nonlinear bidomain model , 2013, Advances in Differential Equations.

[74]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[75]  Jerry Tersoff,et al.  Interface dynamics and crystal phase switching in GaAs nanowires , 2016, Nature.