Error analysis of empirical ocean tide models estimated from TOPEX/POSEIDON altimetry

An error budget is proposed for the TOPEX/POSEIDON (T/P) empirical ocean tide models estimated during the primary mission. The error budget evaluates the individual contribution of errors in each of the altimetric range corrections, orbit errors caused by errors in the background ocean tide potential, and errors caused by the general circulation of the oceans, to errors in the ocean tide models of the eight principal diurnal and semidiurnal tidal components, and the two principal long-period tidal components. The effect of continually updating the T/P empirical ocean tide models during the primary T/P mission is illustrated through tide gauge comparisons and then used to predict the impact of further updates during the extended mission. Both the tide gauge comparisons and the error analysis predict errors in the tide models for the eight principal diurnal and semidiurnal constituents to be of the order of 2–3 cm root-sum-square. The dominant source of errors in the T/P ocean tide models appears to be caused by the general circulation of the oceans observed by the T/P altimeter. Further updates of the T/P empirical ocean tide models during the extended mission should not provide significant improvements in the diurnal and semidiurnal ocean tide models but should provide significant improvements in the long-period ocean tide models, particularly in the monthly (Mm) tidal component.

[1]  Richard Smith,et al.  Global Ocean Circulation from Satellite Altimetry and High-Resolution Computer Simulation , 1996 .

[2]  Steven M. Klosko,et al.  The temporal and spatial characteristics of TOPEX/POSEIDON radial orbit error , 1995 .

[3]  Yi Chao,et al.  A Comparison Between the TOPEX/POSEIDON Data and a Global Ocean General Circulation , 1995 .

[4]  N. K. Pavlis,et al.  Estimation of main tidal constituents from TOPEX altimetry using a Proudman function expansion , 1995 .

[5]  S. Desai,et al.  Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry , 1995 .

[6]  O. B. Andersen,et al.  Intercomparison of recent ocean tide models , 1995 .

[7]  Ole Baltazar Andersen,et al.  Global ocean tides from ERS 1 and TOPEX/POSEIDON altimetry , 1995 .

[8]  Bob E. Schutz,et al.  Precision orbit determination for TOPEX/POSEIDON , 1994 .

[9]  Jacques Stum,et al.  A comparison between TOPEX microwave radiometer, ERS 1 microwave radiometer, and European Centre for Medium-Range Weather Forecasting derived wet tropospheric corrections , 1994 .

[10]  Ernst J. O. Schrama,et al.  A preliminary tidal analysis of TOPEX/POSEIDON altimetry , 1994 .

[11]  C. Shum,et al.  Determination of ocean tides from the first year of TOPEX/POSEIDON altimeter measurements , 1994 .

[12]  Bob E. Schutz,et al.  Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2 , 1994 .

[13]  Philippe Gaspar,et al.  Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences , 1994 .

[14]  S. Bettadpur,et al.  Geographical representation of radial orbit perturbations due to ocean tides: Implications for satellite altimetry , 1994 .

[15]  C. Provost,et al.  Spectroscopy of the world ocean tides from a finite element hydrodynamic model , 1994 .

[16]  Dudley B. Chelton,et al.  The sea state bias in altimeter estimates of sea level from collinear analysis of TOPEX data , 1994 .

[17]  E. J. Christensen,et al.  TOPEX/POSEIDON mission overview , 1994 .

[18]  Stephen K. Gill,et al.  Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes , 1994 .

[19]  A. Miller,et al.  The Fortnightly and Monthly Tides: Resonant Rossby Waves or Nearly Equilibrium Gravity Waves? , 1993 .

[20]  R. C. Malone,et al.  Parallel ocean general circulation modeling , 1992 .

[21]  Richard D. Ray,et al.  Energetics of global ocean tides from Geosat altimetry , 1991 .

[22]  B. Tapley,et al.  Geographically correlated orbit error and its effect on satellite altimetry missions , 1985 .

[23]  John M. Wahr,et al.  Deformation induced by polar motion , 1985 .

[24]  J. Carton The variation with frequency of the long‐period tides , 1983 .

[25]  J. Wahr,et al.  A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free ‘core nutation’ , 1981 .

[26]  F. Dahlen The Passive Influence of the Oceans upon the Rotation of the Earth , 1976 .

[27]  R. Reynolds,et al.  An orthogonalized convolution method of tide prediction , 1975 .

[28]  D. E. Cartwright,et al.  Corrected Tables of Tidal Harmonics , 1973 .

[29]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[30]  R. Nerem,et al.  Geopotential models of the Earth from satellite tracking, altimeter and surface gravity observations: GEM-T3 and GEM-T3S , 1992 .

[31]  Y. Tamura A harmonic development of the tide-generating potential , 1987 .

[32]  E. W. Schwiderski Ocean Tides. Part 1. Global Ocean Tidal Equations , 1980 .

[33]  E. W. Schwiderski Ocean tides, part II: A hydrodynamical interpolation model , 1980 .