Highly potent, naturally acquired human monoclonal antibodies against Pfs48/45 block Plasmodium falciparum transmission to mosquitoes

[1]  T. Bousema,et al.  Combatting seasonal malaria transmission using a highly potent Plasmodium falciparum transmission-blocking monoclonal antibody , 2022, medRxiv.

[2]  T. Bousema,et al.  Safety, tolerability, and Plasmodium falciparum transmission-reducing activity of monoclonal antibody TB31F: a single-centre, open-label, first-in-human, dose-escalation, phase 1 trial in healthy malaria-naive adults , 2022, The Lancet. Infectious diseases.

[3]  Rashmi Ravichandran,et al.  Vaccination with a structure-based stabilized version of malarial antigen Pfs48/45 elicits ultra-potent transmission-blocking antibody responses , 2022, Immunity.

[4]  T. Bousema,et al.  Heterologous Expression and Evaluation of Novel Plasmodium falciparum Transmission Blocking Vaccine Candidates , 2022, Frontiers in Immunology.

[5]  M. M. Jore,et al.  Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies , 2022, bioRxiv.

[6]  K. Dechering,et al.  Barcoded Asaia bacteria enable mosquito in vivo screens and identify novel systemic insecticides and inhibitors of malaria transmission , 2021, PLoS biology.

[7]  M. Huynen,et al.  Monoclonal antibodies block transmission of genetically diverse Plasmodium falciparum strains to mosquitoes , 2021, NPJ vaccines.

[8]  M. Huynen,et al.  Monoclonal antibodies block transmission of genetically diverse Plasmodium falciparum strains to mosquitoes , 2021, npj Vaccines.

[9]  J. Mascola,et al.  A Monoclonal Antibody for Malaria Prevention. , 2021, The New England journal of medicine.

[10]  Samuel J. Hinshaw,et al.  The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates , 2021, Science Translational Medicine.

[11]  P. Duffy Transmission-Blocking Vaccines: Harnessing Herd Immunity for Malaria Elimination , 2021, Expert review of vaccines.

[12]  M. M. Jore,et al.  A Reproducible and Scalable Process for Manufacturing a Pfs48/45 Based Plasmodium falciparum Transmission-Blocking Vaccine , 2021, Frontiers in Immunology.

[13]  T. Bousema,et al.  Antibody Therapy Goes to Insects: Monoclonal Antibodies Can Block Plasmodium Transmission to Mosquitoes. , 2020, Trends in parasitology.

[14]  D. Fidock,et al.  Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda , 2020, Nature Medicine.

[15]  T. Bousema,et al.  Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites , 2019, Immunological reviews.

[16]  D. Kwiatkowski,et al.  An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples , 2019, bioRxiv.

[17]  W. Schief,et al.  Potent antibody lineage against malaria transmission elicited by human vaccination with Pfs25 , 2019, Nature Communications.

[18]  A. Semesi,et al.  Structural delineation of potent transmission-blocking epitope I on malaria antigen Pfs48/45 , 2018, Nature Communications.

[19]  M. M. Jore,et al.  Structural basis for recognition of the malaria vaccine candidate Pfs48/45 by a transmission blocking antibody , 2018, Nature Communications.

[20]  John Bradley,et al.  Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity , 2018, Nature Communications.

[21]  Ulrik H. Mistarz,et al.  Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine , 2017, Microbial Cell Factories.

[22]  M. M. Jore,et al.  Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine , 2017, Expert review of vaccines.

[23]  T. Bousema,et al.  Naturally acquired immunity to sexual stage P. falciparum parasites , 2016, Parasitology.

[24]  Teun Bousema,et al.  A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes , 2015, Scientific Reports.

[25]  Andrew J Tatem,et al.  Malaria transmission, infection, and disease at three sites with varied transmission intensity in Uganda: implications for malaria control. , 2015, The American journal of tropical medicine and hygiene.

[26]  T. Bousema,et al.  A Plasmodium falciparum 48/45 single epitope R0.6C subunit protein elicits high levels of transmission blocking antibodies. , 2015, Vaccine.

[27]  Michel C Nussenzweig,et al.  Amplification of highly mutated human Ig lambda light chains from an HIV-1 infected patient. , 2015, Journal of immunological methods.

[28]  T. Bousema,et al.  A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages. , 2014, Vaccine.

[29]  Piotr Sliz,et al.  Collaboration gets the most out of software , 2013, eLife.

[30]  David Nemazee,et al.  Rational immunogen design to target specific germline B cell receptors , 2012, Retrovirology.

[31]  J. Whittle,et al.  Structural and genetic basis for development of broadly neutralizing influenza antibodies , 2012, Nature.

[32]  Mario Roederer,et al.  Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing , 2011, Science.

[33]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[34]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[35]  Eileen Kraemer,et al.  PlasmoDB: a functional genomic database for malaria parasites , 2008, Nucleic Acids Res..

[36]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[37]  H. Stunnenberg,et al.  Epitope Analysis of the Malaria Surface Antigen Pfs48/45 Identifies a Subdomain That Elicits Transmission Blocking Antibodies* , 2007, Journal of Biological Chemistry.

[38]  Siarhei Maslau,et al.  Structural models for the protein family characterized by gamete surface protein Pfs230 of Plasmodium falciparum. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Stunnenberg,et al.  A Central Role for P48/45 in Malaria Parasite Male Gamete Fertility , 2001, Cell.

[40]  D. Kaslow,et al.  A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines , 1997, Infection and immunity.

[41]  M. Bolmer,et al.  Association between anti‐Pfs48/45 reactivity and P. falciparum transmission‐blocking activity in sera from Cameroon , 1996, Parasite immunology.

[42]  R. Konings,et al.  Cloning and expression of the gene coding for the transmission blocking target antigen Pfs48/45 of Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[43]  R. Carter,et al.  Properties of epitopes of Pfs 48/45, a target of transmission blocking monoclonal antibodies, on gametes of different isolates of Plasmodium falciparum , 1990, Parasite immunology.

[44]  J. Meuwissen,et al.  Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes , 1989, Parasitology.

[45]  M. Smits,et al.  Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito , 1985, The Journal of experimental medicine.

[46]  T. Burkot,et al.  Target antigens of transmission-blocking immunity on gametes of plasmodium falciparum , 1983, The Journal of experimental medicine.

[47]  Min-Sung Kim,et al.  Transient mammalian cell transfection with polyethylenimine (PEI). , 2013, Methods in enzymology.

[48]  Michel C Nussenzweig,et al.  Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. , 2008, Journal of immunological methods.

[49]  Weltgesundheitsorganisation World malaria report , 2005 .

[50]  R. Sauerwein,et al.  Plasmodium falciparum: production and characterization of rat monoclonal antibodies specific for the sexual-stage Pfs48/45 antigen. , 2001, Experimental parasitology.

[51]  J. Meuwissen,et al.  Plasmodium falciparum transmission blocking monoclonal antibodies recognize monovalently expressed epitopes. , 1985, Developments in biological standardization.