Color Feature Detection

The detection and classification of local structures (i.e., edges, corners, an T-junctions) in color images is important for many applications, such as image segmentation, image matching, object recognition, and visual tracking in the fields of image processing and computer vision. In general, those local image structures are detected by differential operators that are commonly restricted to luminance information. However, most of the images recorded today are in color. Therefore, in this chapter, the focus is on the use of color information to detect and classify local image features.

[1]  P. Wolfe THE SIMPLEX METHOD FOR QUADRATIC PROGRAMMING , 1959 .

[2]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[3]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[4]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[5]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Josef Bigün,et al.  Local symmetry modeling in multi-dimensional images , 1992, Pattern Recognit. Lett..

[7]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[9]  J. Bigun Pattern recognition in images by symmetries and coordinate transformations , 1997 .

[10]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[11]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Joost van de Weijer,et al.  Curvature Estimation in Oriented Patterns Using Curvilinear Models Applied to Gradient Vector Fields , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Linda G. Shapiro,et al.  Computer and Robot Vision (Volume II) , 2002 .

[14]  Theo Gevers,et al.  Classifying color edges in video into shadow-geometry, highlight, or material transitions , 2003, IEEE Trans. Multim..

[15]  Gudrun Klinker,et al.  A physical approach to color image understanding , 1989, International Journal of Computer Vision.

[16]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[17]  T. Gevers,et al.  UvA-DARE ( Digital Academic Repository ) Robust Histogram Construction from Color Invariants for Object Recognition , 2003 .

[18]  Theo Gevers,et al.  Color feature detection and classification by learning , 2005, IEEE International Conference on Image Processing 2005.

[19]  Joost van de Weijer,et al.  Edge and corner detection by photometric quasi-invariants , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Joost van de Weijer,et al.  Boosting color saliency in image feature detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Joost van de Weijer,et al.  Robust photometric invariant features from the color tensor , 2006, IEEE Transactions on Image Processing.