Is Assembly of the SNARE Complex Enough to Fuel Membrane Fusion?

The three key players in the exocytotic release of neurotransmitters from synaptic vesicles are the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin 2, syntaxin 1a, and SNAP-25. Their assembly into a tight four-helix bundle complex is thought to pull the two membranes into close proximity. It is debated, however, whether the energy generated suffices for membrane fusion. Here, we have determined the thermodynamic properties of the individual SNARE assembly steps by isothermal titration calorimetry. We found extremely large favorable enthalpy changes counterbalanced by positive entropy changes, reflecting the major conformational changes upon assembly. To circumvent the fact that ternary complex formation is essentially irreversible, we used a stabilized syntaxin-SNAP-25 heterodimer to study synaptobrevin binding. This strategy revealed that the N-terminal synaptobrevin coil binds reversibly with nanomolar affinity. This suggests that individual, membrane-bridging SNARE complexes can provide much less pulling force than previously claimed.

[1]  V. Parpura,et al.  Single Molecule Measurements of Interaction Free Energies Between the Proteins Within Binary and Ternary SNARE Complexes. , 2009, Journal of nanoneuroscience.

[2]  Vladimir Parpura,et al.  Molecular form follows function: (un)snaring the SNAREs , 2008, Trends in Neurosciences.

[3]  J. Rothman,et al.  Distinct Domains of Complexins Bind SNARE Complexes and Clamp Fusion in Vitro* , 2008, Journal of Biological Chemistry.

[4]  Vladimir Parpura,et al.  Comparative energy measurements in single molecule interactions. , 2008, Biophysical journal.

[5]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[6]  J. Rizo,et al.  Synaptic vesicle fusion , 2008, Nature Structural &Molecular Biology.

[7]  S. Harrison Viral membrane fusion , 2008, Nature Structural &Molecular Biology.

[8]  H. McMahon,et al.  Mechanisms of membrane fusion: disparate players and common principles , 2008, Nature Reviews Molecular Cell Biology.

[9]  T. Ha,et al.  Complexin and Ca2+ stimulate SNARE-mediated membrane fusion , 2008, Nature Structural &Molecular Biology.

[10]  G. Sapiro,et al.  Molecular architecture of native HIV-1 gp120 trimers , 2008, Nature.

[11]  Marc Baaden,et al.  Interactions between neuronal fusion proteins explored by molecular dynamics. , 2008, Biophysical journal.

[12]  Dirk Fasshauer,et al.  Munc18a controls SNARE assembly through its interaction with the syntaxin N‐peptide , 2008, The EMBO journal.

[13]  J. Rizo A dynamic t-SNARE complex. , 2008, Structure.

[14]  A. Brunger,et al.  Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. , 2008, Structure.

[15]  J. Rizo,et al.  How much can SNAREs flex their muscles? , 2007, Nature Structural &Molecular Biology.

[16]  J. Rothman,et al.  Energetics and dynamics of SNAREpin folding across lipid bilayers , 2007, Nature Structural &Molecular Biology.

[17]  Peter D. Kwong,et al.  Structures of the CCR5 N Terminus and of a Tyrosine-Sulfated Antibody with HIV-1 gp120 and CD4 , 2007, Science.

[18]  M. Verhage,et al.  Regulated exocytosis: merging ideas on fusing membranes. , 2007, Current opinion in cell biology.

[19]  Sonja M. Wojcik,et al.  Regulation of Membrane Fusion in Synaptic Excitation-Secretion Coupling: Speed and Accuracy Matter , 2007, Neuron.

[20]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[21]  Winfried Weissenhorn,et al.  Virus membrane fusion , 2007, FEBS Letters.

[22]  T. Ha,et al.  Multiple intermediates in SNARE-induced membrane fusion , 2006, Proceedings of the National Academy of Sciences.

[23]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[24]  R. Schooley,et al.  Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion , 2006, Proceedings of the National Academy of Sciences.

[25]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[26]  Alexander Stein,et al.  N- to C-Terminal SNARE Complex Assembly Promotes Rapid Membrane Fusion , 2006, Science.

[27]  V. Parpura,et al.  Single molecule mechanical probing of the SNARE protein interactions. , 2006, Biophysical journal.

[28]  J. Rizo,et al.  SNARE-mediated lipid mixing depends on the physical state of the vesicles. , 2006, Biophysical journal.

[29]  A. Brunger,et al.  Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. , 2006, Biophysical journal.

[30]  D. Engelman Membranes are more mosaic than fluid , 2005, Nature.

[31]  Fan Zhang,et al.  Membrane Fusion Induced by Neuronal SNAREs Transits through Hemifusion*[boxs] , 2005, Journal of Biological Chemistry.

[32]  Fan Zhang,et al.  Hemifusion in SNARE-mediated membrane fusion , 2005, Nature Structural &Molecular Biology.

[33]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[34]  A. Fink Natively unfolded proteins. , 2005, Current opinion in structural biology.

[35]  G. Bodoky Experimentelle Übertragungsversuche von Darmausscheidungen leberdystrophie- und hepatitis-epidemica-kranker Menschen auf Wellensittiche(Melopsittacus undulatus) , 1947, Experientia.

[36]  Dirk Fasshauer,et al.  A Transient N-terminal Interaction of SNAP-25 and Syntaxin Nucleates SNARE Assembly* , 2004, Journal of Biological Chemistry.

[37]  Ernesto Freire,et al.  Interactions of HIV-1 proteins gp120 and Nef with cellular partners define a novel allosteric paradigm. , 2004, Current protein & peptide science.

[38]  C. Weiss HIV-1 gp41: mediator of fusion and target for inhibition. , 2003, AIDS reviews.

[39]  P. Steiner,et al.  Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Y. Shin,et al.  Membrane topologies of neuronal SNARE folding intermediates. , 2002, Biochemistry.

[41]  J. Rothman,et al.  Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins , 2002, The Journal of cell biology.

[42]  Y. Shin,et al.  The Four-helix Bundle of the Neuronal Target Membrane SNARE Complex Is Neither Disordered in the Middle nor Uncoiled at the C-terminal Region* , 2002, The Journal of Biological Chemistry.

[43]  V. Markin,et al.  Membrane fusion: stalk model revisited. , 2002, Biophysical journal.

[44]  V. Subramaniam,et al.  SNARE assembly and disassembly exhibit a pronounced hysteresis , 2002, Nature Structural Biology.

[45]  R. Jahn,et al.  Homo- and Heterooligomeric SNARE Complexes Studied by Site-directed Spin Labeling* , 2001, The Journal of Biological Chemistry.

[46]  W. Xiao,et al.  The neuronal t-SNARE complex is a parallel four-helix bundle , 2001, Nature Structural Biology.

[47]  P S Kim,et al.  Mechanisms of viral membrane fusion and its inhibition. , 2001, Annual review of biochemistry.

[48]  W A Hendrickson,et al.  Energetics of the HIV gp120-CD4 binding reaction. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Rothman,et al.  Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  W. Antonin,et al.  Mixed and Non-cognate SNARE Complexes , 1999, The Journal of Biological Chemistry.

[51]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[52]  J. Sodroski,et al.  Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody , 1998, Nature.

[53]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[54]  A T Brünger,et al.  Structural Changes Are Associated with Soluble N-Ethylmaleimide-sensitive Fusion Protein Attachment Protein Receptor Complex Formation* , 1997, The Journal of Biological Chemistry.

[55]  P. Hanson,et al.  Neurotransmitter release — four years of SNARE complexes , 1997, Current Opinion in Neurobiology.

[56]  S. Harrison,et al.  Atomic structure of the ectodomain from HIV-1 gp41 , 1997, Nature.

[57]  Stephen C. Blacklow,et al.  A trimeric structural domain of the HIV-1 transmembrane glycoprotein , 1995, Nature Structural Biology.

[58]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.