A Local Semi-Implicit Level-Set Method for Interface Motion

This paper proposes and implements a novel hybrid level set method which combines the numerical efficiency of the local level set approach with the temporal stability afforded by a semi-implicit technique. By introducing an extraction/insertion algorithm into the local level set approach, we can accurately capture complicated behaviors such as interface separation and coalescence. This technique solves a well known problem when treating a semi-implicit system with spectral methods, where spurious interface movements emerge when two interfaces are close to each other. Numerical experiments show that the proposed method is stable, efficient and scales up well into three dimensional problems.

[1]  J. Sethian,et al.  Motion by intrinsic Laplacian of curvature , 1999 .

[2]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[3]  Ronald Fedkiw,et al.  A level set method for thin film epitaxial growth , 2001 .

[4]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[5]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[6]  Haifa,et al.  Numerical simulation of grain-boundary grooving by level set method , 2000, cond-mat/0001449.

[7]  John C. Chai,et al.  A Global Mass Correction Scheme for the Level-Set Method , 2006 .

[8]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[9]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[10]  Hagan,et al.  Columnar growth in thin films. , 1988, Physical review letters.

[11]  Mikko Karttunen,et al.  Stencils with isotropic discretization error for differential operators , 2006 .

[12]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[13]  Peter Smereka,et al.  Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion , 2003, J. Sci. Comput..

[14]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[15]  W. Lu,et al.  Programmable nanoscale domain patterns in multilayers , 2005 .

[16]  W. Lu,et al.  Design nanocrack patterns in heterogeneous films , 2006 .

[17]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[18]  W. Mullins Theory of Thermal Grooving , 1957 .

[19]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[20]  Z Suo,et al.  Programmable motion and patterning of molecules on solid surfaces. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[22]  Huajian Gao,et al.  A Numerical Study of Electro-migration Voiding by Evolving Level Set Functions on a Fixed Cartesian Grid , 1999 .

[23]  John S. Lowengrub,et al.  An improved geometry-aware curvature discretization for level set methods: Application to tumor growth , 2006, J. Comput. Phys..