Optimized piezoelectric and structural properties of (Bi,Na)TiO3–(Bi,K)TiO3 ceramics for energy harvester applications

Abstract We investigated (1− x )(Bi,Na)TiO 3 – x (Bi,K)TiO 3 ( x =0, 0.14, 0.16, 0.18, 0.20, and 0.22) compositions of lead-free piezoelectric ceramics for potential energy harvester applications. Composition and sintering temperature of (1− x )(Bi,Na)TiO 3 – x (Bi,K)TiO 3 were varied to extract the optimized processing temperature with each composition. We compared and analyzed sintering temperature-dependent surface morphologies and electrical properties. Maximum piezoelectric charge constant of 180 pC/N were obtained from the 0.8(Bi,Na)TiO 3 –0.2(Bi,K)TiO 3 composition at the sintering temperature of 1180 °C. Temperature dependent dielectric permittivity was measured to know the phase transition. We corresponded two different anomaly peaks, observed at 84 and 290 °C, as the rhombohedral-tetragonal and tetragonal-cubic phase transitions, respectively. Due to these phase transitions, different shapes of polarization-electric field loops (P-E loops) were measured and compared. Finally, output power of 42.39 nW/cm 2 were obtained for the (1− x )(Bi,Na)TiO 3 – x (Bi,K)TiO 3 lead free piezoelectric ceramics.

[1]  Yiping Guo,et al.  Structure and Electrical Properties of Lead-Free (Na0.5K0.5)NbO3-BaTiO3 Ceramics , 2004 .

[2]  H. Chan,et al.  Dielectric properties of Mn-doped (Na0.8K0.2)0.5Bi0.5TiO3 ceramics , 2006 .

[3]  J. Hao,et al.  Piezoelectric, ferroelectric and dielectric properties of Nd2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics , 2010 .

[4]  I. Lin,et al.  Study of ferroelectricity in the PMN-PT system near the morphotropic phase boundary , 1993 .

[5]  L. Pintilie,et al.  Structural, dielectric, and piezoelectric properties of fine-grained NBT–BT0.11 ceramic derived from gel precursor , 2012 .

[6]  P. Ramos,et al.  High-field electromechanical response of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 across its morphotropic phase boundary , 2014 .

[7]  Thomas R. Shrout,et al.  Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics , 2006 .

[8]  Hajime Nagata,et al.  Ferroelectric and Piezoelectric Properties of (Bi1/2K1/2)TiO3 Ceramics , 2005 .

[9]  J. Hao,et al.  Piezoelectric, ferroelectric and dielectric properties of La2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics , 2010 .

[10]  N. Vittayakorn,et al.  Dielectric and ferroelectric characteristics of 0.7PZT–0.3PZN ceramics substituted with Sr , 2005 .

[11]  Wook Jo,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties , 2008 .

[12]  J. Rahman,et al.  Dielectric, ferroelectric and field-induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3 ceramics , 2014 .

[13]  D. Suvorov,et al.  Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 system , 2010 .

[14]  G. Smolensky,et al.  New ferroelectrics of complex composition. IV , 1961 .

[15]  Q. Yin,et al.  Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics , 2002 .

[16]  J. Lee,et al.  Synthesis, ferroelectric and piezoelectric properties of some (Na0.5Bi0.5)TiO3 system compositions , 2005 .

[17]  Nan Liu,et al.  Piezoelectric properties of low-temperature sintered Li-modified (Na, K)NbO3 lead-free ceramics , 2008 .

[18]  J. Koh,et al.  Dielectric and piezoelectric properties of (1−x)(Bi,Na)TiO3–x(Bi,K)TiO3 lead-free ceramics for piezoelectric energy harvesters , 2015 .

[19]  M. Cao,et al.  Phase diagram and properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 polycrystalline ceramics , 2012 .

[20]  Jiadong Zang,et al.  Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective , 2012, Journal of Electroceramics.

[21]  S. Chu,et al.  Effects of sintering temperature on the dielectric and piezoelectric properties of Sr additive Sm-modified PbTiO3 ceramics , 2002 .

[22]  R. Zuo,et al.  Phase transition behavior and electrical properties of lead-free (Bi0.5K0.5)TiO3–LiNbO3 relaxor ferroelectric ceramics , 2013 .

[23]  I. Ueda,et al.  Electromechanical Properties of PbTiO3 Ceramics Containing La and Mn , 1971 .

[24]  Cheng-Sao Chen,et al.  Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics , 2014 .

[25]  R. Zuo,et al.  Na0.5K0.5NbO3–BiFeO3 lead-free piezoelectric ceramics , 2008 .

[26]  D. Choi,et al.  Piezoelectric Properties and Densification Based on Control of Volatile Mass of Potassium and Sodium in (K0.5Na0.5)NbO3 Ceramics , 2008 .

[27]  M. Yoon,et al.  Phase-formation, microstructure, and piezoelectric/dielectric properties of BiYO3-doped Pb(Zr0.53Ti0.47)O3 for piezoelectric energy harvesting devices , 2013 .

[28]  Boping Zhang,et al.  Enhancing piezoelectric coefficient d33 in LiF-doped BaTiO3 ceramics by optimizing excess Ba content , 2014 .

[29]  Jung-Hyuk Koh,et al.  (1 − x)Bi0.5Na0.5TiO3–xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications , 2015 .

[30]  I. Kim,et al.  Effect of potassium concentration on the structure and electrical properties of lead-free Bi0.5 (Na,K)0.5 TiO3–BiAlO3 piezoelectric ceramics , 2011 .

[31]  N. Setter,et al.  Preparation and characterization of (K0.5Na0.5)NbO3 ceramics , 2006 .

[32]  Masato Matsubara,et al.  Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3−K5.4CuTa10O29 ceramics , 2005 .

[33]  M. Yoon,et al.  Piezoelectric materials of (1-x)Pb(Zr0.53Ti0.47)O3-xBi(Y0.7Fe0.3)O3 for energy-harvesting devices , 2014 .

[34]  Feifei Wang,et al.  Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3-based lead-free solid solutions , 2014 .