Aberrant microRNA expression and its implications in the pathogenesis of leukemias

BackgroundMicroRNAs (miRNAs) are a class of non-coding, endogenous, small RNAs that negatively regulate gene expression by inducing degradation or translational inhibition of target mRNAs. Aberrant expression of miRNAs appears to be a common characteristic of hematological malignancies including leukemias.AimHere we review the available data supporting a role of aberrant expression of miRNAs in the pathogenesis of leukemias including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL).ConclusionsThe expression signatures of miRNAs provide exciting opportunities in the diagnosis, prognosis, and therapy of leukemia. Since miRNAs can function as either oncogenes or tumor suppressor genes in leukemogenesis, the potential of using these small RNAs as therapeutic targets opens up new opportunities for leukemia therapy by either inhibiting or augmenting their activity.

[1]  Gregory J. Hannon,et al.  microRNAs join the p53 network — another piece in the tumour-suppression puzzle , 2007, Nature Reviews Cancer.

[2]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[3]  M. Kudo,et al.  Down-Regulation of miR-92 in Human Plasma Is a Novel Marker for Acute Leukemia Patients , 2009, PloS one.

[4]  Lynne T. Bemis,et al.  Truncation in CCND 1 mRNA alters miR-16-1 regulation in mantle cell lymphoma , 2008 .

[5]  R. Weinberg,et al.  MicroRNAs in malignant progression , 2008, Cell cycle.

[6]  C. Croce,et al.  MicroRNAs in normal and malignant hematopoiesis , 2008, Current opinion in hematology.

[7]  Dirk Winkler,et al.  miR-34a as part of the resistance network in chronic lymphocytic leukemia. , 2008, Blood.

[8]  Y. Pekarsky,et al.  Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. , 2006, Cancer research.

[9]  M. D. Boer,et al.  MicroRNAs in acute leukemia: from biological players to clinical contributors , 2012, Leukemia.

[10]  F. Rosenbauer,et al.  Effect of transcription-factor concentrations on leukemic stem cells. , 2005, Blood.

[11]  Gerhard Ehninger,et al.  Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). , 2006, Blood.

[12]  F. Lo‐Coco,et al.  Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. , 2007, Cancer cell.

[13]  A. Strasser,et al.  Bim: a novel member of the Bcl‐2 family that promotes apoptosis , 1998, The EMBO journal.

[14]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[15]  N. Rajewsky,et al.  Regulation of the Germinal Center Response by MicroRNA-155 , 2007, Science.

[16]  William Ritchie,et al.  Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia , 2010, Haematologica.

[17]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[18]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[19]  C. Croce,et al.  MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.

[20]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[21]  Tushar Patel,et al.  Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. , 2006, Gastroenterology.

[22]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[23]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[24]  R. Stallings,et al.  MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells , 2007, Oncogene.

[25]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[26]  G. Calin,et al.  Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. , 2009, Blood.

[27]  R. Crazzolara,et al.  Emerging treatments in acute lymphoblastic leukemia. , 2009, Current cancer drug targets.

[28]  Haifeng Zhao,et al.  MicroRNA and leukemia: tiny molecule, great function. , 2010, Critical reviews in oncology/hematology.

[29]  Brunangelo Falini,et al.  Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. , 2007, Blood.

[30]  P. Brousset,et al.  Myeloid Cell Differentiation Arrest by Mir-125b-1 in Myelodysplasic Syndrome and Acute Myeloid Leukemia with the T(2;11)(p21;q23) Translocation , 2008 .

[31]  Anton J. Enright,et al.  Requirement of bic/microRNA-155 for Normal Immune Function , 2007, Science.

[32]  L. Lim,et al.  Transcripts Targeted by the MicroRNA-16 Family Cooperatively Regulate Cell Cycle Progression , 2007, Molecular and Cellular Biology.

[33]  R. Greil,et al.  microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. , 2010, Blood.

[34]  J. M. Thomson,et al.  Direct Regulation of an Oncogenic Micro-RNA Cluster by E2F Transcription Factors* , 2007, Journal of Biological Chemistry.

[35]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[36]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[37]  Liang-Hu Qu,et al.  MicroRNA Patterns Associated with Clinical Prognostic Parameters and CNS Relapse Prediction in Pediatric Acute Leukemia , 2009, PloS one.

[38]  J. Rowley,et al.  Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. , 2009, Blood.

[39]  T. Golub,et al.  Distinct microRNA expression profiles in acute myeloid leukemia with common translocations , 2008, Proceedings of the National Academy of Sciences.

[40]  Hiroyuki Tagawa,et al.  Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. , 2004, Cancer research.

[41]  Jean-Baptiste Cazier,et al.  Distinctive Patterns of MicroRNA Expression Associated with Karyotype in Acute Myeloid Leukaemia , 2008, PloS one.

[42]  Ying Feng,et al.  Supplemental Data P53-mediated Activation of Mirna34 Candidate Tumor-suppressor Genes , 2022 .

[43]  J. Cigudosa,et al.  Genetic and Epigenetic Silencing of microRNA-203 Enhances ABL 1 and BCR-ABL 1 Oncogene Expression , 2008 .

[44]  M. Dugas,et al.  Identification of acute myeloid leukaemia associated microRNA expression patterns , 2007, British journal of haematology.

[45]  Terry Hyslop,et al.  A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation , 2008, The Journal of cell biology.

[46]  J. Nemunaitis,et al.  Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? , 2008, Cancer Gene Therapy.

[47]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[48]  Yariv Yogev,et al.  Serum MicroRNAs Are Promising Novel Biomarkers , 2008, PloS one.

[49]  Hugo Naya,et al.  Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis , 2008, Leukemia.

[50]  Borja Saez,et al.  Down-Regulation of hsa-miR-10a in Chronic Myeloid Leukemia CD34+ Cells Increases USF2-Mediated Cell Growth , 2008, Molecular Cancer Research.

[51]  R. Gale,et al.  Chronic myeloid leukemia. , 1992, The American journal of medicine.

[52]  G. Calin,et al.  The role of microRNA in human leukemia: a review , 2009, Leukemia.

[53]  N. Zeleznik-Le,et al.  MicroRNAs in leukemias: emerging diagnostic tools and therapeutic targets. , 2010, Current drug targets.

[54]  C M Croce,et al.  Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Y. Yatabe,et al.  A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. , 2005, Cancer research.

[56]  O. Witte,et al.  Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. , 1990, Science.

[57]  M. Stoffel,et al.  Specificity, duplex degradation and subcellular localization of antagomirs , 2007, Nucleic acids research.

[58]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[59]  Guido Marcucci,et al.  The prognostic and functional role of microRNAs in acute myeloid leukemia. , 2011, Blood.

[60]  S. Kauppinen,et al.  LNA-modified oligonucleotides mediate specific inhibition of microRNA function. , 2006, Gene.

[61]  Patrick J. Paddison,et al.  Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia , 2010, Nature Cell Biology.

[62]  T Chaplin,et al.  MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis , 2007, Leukemia.

[63]  H. Klamová,et al.  Expression patterns of microRNAs associated with CML phases and their disease related targets , 2011, Molecular Cancer.

[64]  William A Robinson,et al.  Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. , 2008, Blood.

[65]  J Khan,et al.  The MYCN oncogene is a direct target of miR-34a , 2008, Oncogene.

[66]  Miao Sun,et al.  MicroRNA and cancer: Current status and prospective , 2006, International journal of cancer.

[67]  C. Croce,et al.  MicroRNAs in the pathogeny of chronic lymphocytic leukaemia , 2007, British journal of haematology.

[68]  Edurne San José-Enériz,et al.  MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations , 2009, Molecular Cancer.

[69]  Doron Betel,et al.  Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. , 2009, Genes & development.

[70]  C. Ji,et al.  Micro-RNAs and their potential target genes in leukemia pathogenesis , 2009, Cancer biology & therapy.

[71]  Meng Ling Choong,et al.  MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. , 2007, Experimental hematology.

[72]  Christian Langer,et al.  Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[73]  J. Haier,et al.  MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. , 2010, European journal of cancer.

[74]  J. Rowley,et al.  Leukaemogenesis: more than mutant genes , 2010, Nature Reviews Cancer.

[75]  M. Fabbri,et al.  MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications , 2008, Leukemia.

[76]  C. Croce,et al.  Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[77]  F. Fazi,et al.  Oncoproteins, heterochromatin silencing and microRNAs: a new link for leukemogenesis , 2008, Epigenetics.

[78]  Jing Wang,et al.  Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes , 2008, Nature Immunology.

[79]  M. D. Boer,et al.  Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia , 2009, Leukemia.

[80]  Zissimos Mourelatos,et al.  MicroRNAs: Biogenesis and Molecular Functions , 2008, Brain pathology.

[81]  O. Kent,et al.  A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes , 2006, Oncogene.

[82]  G. Marti,et al.  Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity , 2009, Molecular Cancer Therapeutics.

[83]  Wayne Tam,et al.  Accumulation of miR-155 and BIC RNA in human B cell lymphomas. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[84]  C. Bloomfield,et al.  High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study. , 2008, Blood.

[85]  B. Kroesen,et al.  The role of microRNAs in normal hematopoiesis and hematopoietic malignancies , 2006, Leukemia.

[86]  U. Klein,et al.  New insights into the pathogenesis of chronic lymphocytic leukemia. , 2010, Seminars in cancer biology.

[87]  Andrea Califano,et al.  The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. , 2010, Cancer cell.

[88]  G. Marti,et al.  Murine models of chronic lymphocytic leukaemia: role of microRNA‐16 in the New Zealand Black mouse model , 2007, British journal of haematology.

[89]  Daniel B. Martin,et al.  Circulating microRNAs as stable blood-based markers for cancer detection , 2008, Proceedings of the National Academy of Sciences.

[90]  Hiroyuki Tagawa,et al.  MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. , 2008, Blood.

[91]  T. Golub,et al.  MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia , 2007, Proceedings of the National Academy of Sciences.

[92]  M. Vasconcelos,et al.  miR signatures and the role of miRs in acute myeloid leukaemia. , 2010, European journal of cancer.

[93]  J. Mendell,et al.  Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. , 2007, Experimental hematology.

[94]  C. Croce,et al.  microRNAs: Master regulators as potential therapeutics in cancer. , 2011, Annual review of pharmacology and toxicology.

[95]  C. Croce,et al.  MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Chris Sander,et al.  Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. , 2007, Blood.

[97]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[98]  J. Rowley,et al.  Leukaemogenesis: more than mutant genes , 2010, Nature Reviews Cancer.

[99]  O. Kirak,et al.  Regulation of progenitor cell proliferation and granulocyte function by microRNA-223 , 2008, Nature.

[100]  Torsten Haferlach,et al.  Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin , 2008, Proceedings of the National Academy of Sciences.

[101]  Benjamin Haibe-Kains,et al.  microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. , 2009, Blood.

[102]  A. Silahtaroglu,et al.  Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver , 2007, Nucleic acids research.

[103]  M. Yamakuchi,et al.  miR-34a repression of SIRT1 regulates apoptosis , 2008, Proceedings of the National Academy of Sciences.

[104]  M. Cleary,et al.  The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. , 2010, Cancer research.

[105]  Aadel A. Chaudhuri,et al.  Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder , 2008, The Journal of experimental medicine.

[106]  S. Lowe,et al.  miR-19 is a key oncogenic component of mir-17-92. , 2009, Genes & development.

[107]  Stefano Volinia,et al.  Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[108]  A W Langerak,et al.  17p13/TP53 deletion in B-CLL patients is associated with microRNA-34a downregulation , 2009, Leukemia.

[109]  George A Calin,et al.  MicroRNA fingerprints during human megakaryocytopoiesis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[111]  M. Zago,et al.  miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. , 2007, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[112]  J. Melo,et al.  The molecular biology of chronic myeloid leukemia. , 2000, Blood.

[113]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Michael A. Beer,et al.  Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. , 2007, Molecular cell.

[115]  M. Caligiuri,et al.  Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[116]  Sadegh Babashah,et al.  The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. , 2011, European journal of cancer.

[117]  Lin He,et al.  The guardian's little helper: microRNAs in the p53 tumor suppressor network. , 2007, Cancer research.

[118]  M. Caligiuri,et al.  BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[119]  George A Calin,et al.  MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. , 2008, Blood.

[120]  C. Croce,et al.  MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[121]  U. Thorsteinsdóttir,et al.  marrow cells induces stem cell expansion gene in bone Hoxa 9 associated − Overexpression of the myeloid leukemia , 2001 .

[122]  M. Malumbres,et al.  Control of cell proliferation pathways by microRNAs , 2008, Cell cycle.

[123]  Donglin Cao,et al.  Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia , 2010, Proceedings of the National Academy of Sciences.

[124]  Michaela Scherr,et al.  Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. , 2007, Blood.

[125]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[126]  G. Berchem,et al.  Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia , 2010, Molecular Cancer.

[127]  George A Calin,et al.  microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. , 2010, Blood.

[128]  W. Cho MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. , 2010, The international journal of biochemistry & cell biology.

[129]  Bob Löwenberg,et al.  MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. , 2008, Blood.

[130]  Pablo Landgraf,et al.  Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. , 2007, Blood.

[131]  C. Croce,et al.  MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia , 2007, Oncogene.

[132]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Alessandro Fatica,et al.  A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis , 2005, Cell.

[134]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[135]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[136]  M. Caligiuri,et al.  MicroRNA expression in cytogenetically normal acute myeloid leukemia. , 2008, The New England journal of medicine.

[137]  C. Croce,et al.  MiR-15a and miR-16-1 cluster functions in human leukemia , 2008, Proceedings of the National Academy of Sciences.

[138]  Shamit Soneji,et al.  Microrna expression distinguishes between germinal center B cell‐like and activated B cell‐like subtypes of diffuse large B cell lymphoma , 2007, International journal of cancer.

[139]  C. Croce,et al.  CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control , 2006, Proceedings of the National Academy of Sciences.

[140]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[141]  Carlo M. Croce,et al.  MicroRNAs 17-5p–20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation , 2007, Nature Cell Biology.

[142]  C. Croce,et al.  B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[143]  Vincent De Guire,et al.  An E2F/miR-20a Autoregulatory Feedback Loop* , 2007, Journal of Biological Chemistry.