Phylogenetic patterns and diversification in the caesalpinioid legumes

Subfamily Caesalpinioideae is a paraphyletic grade of 171 genera that comprises the first branches of the Leguminosae and from which are derived the monophyletic subfamilies Mimosoideae and Papilionoideae. We have sequenced the chloroplast matK gene, and the trnL and 3′-trnK introns for 153 genera of caesalpinioid legumes. Parsimony and Bayesian phylogenetic analyses of these data support the monophyly of several major groups within the caesalpinioid legumes: the Cercideae, Detarieae, Detarieae s. str., Prioria, Amherstieae, Dialiinae, Cassia, Caesalpinia, Peltophorum, and Tachigali clades. Relationships among the first branching lineages of the legumes are not well supported, with Cercideae, Detarieae, and the genus Duparquetia alternatively resolved as sister group to all of the legumes. The division of certain large genera (e.g., Caesalpinia s. l., Bauhinia s. l.) into segregate genera generally is supported by our molecular data. Using 18 well-documented fossils as calibration points, fixing the stem ...

[1]  D. Jarzen,et al.  Studies in Neotropical Paleobotany. I. The Oligocene Communities of Puerto Rico , 1969 .

[2]  D. Mildenhall Fossil pollen of Acacia type from New Zealand , 1972 .

[3]  W. Crepet,et al.  INVESTIGATIONS OF ANGIOSPERMS FROM THE EOCENE OF NORTH AMERICA: A MIMOSOID INFLORESCENCE , 1977 .

[4]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[5]  Joseph Felsenstein,et al.  A likelihood approach to character weighting and what it tells us about parsimony and compatibility , 1981 .

[6]  Peter H. Raven,et al.  Advances in legume systematics , 1981 .

[7]  W. Crepet,et al.  The Diversification of the Leguminosae: First Fossil Evidence of the Mimosoideae and Papilionoideae , 1985, Science.

[8]  A. Graham Studies in Neotropical Paleobotany. IV. The Eocene Communities of Panama , 1985 .

[9]  W. Crepet,et al.  PRIMITIVE MIMOSOID FLOWERS FROM THE PALEOCENE‐EOCENE AND THEIR SYSTEMATIC AND EVOLUTIONARY IMPLICATIONS , 1986 .

[10]  D. Hastings,et al.  The new explorers, a one-act play , 1986 .

[11]  G. Cowles Studies of Mascarene Island birds: The fossil record , 1987 .

[12]  A. Graham Studies in neotropical paleobotany. VI: The lower Miocene communities of Panama: the Cucaracha formation , 1988 .

[13]  M. Crawley Palaeocene wood from the Republic of Mali , 1988 .

[14]  P. Guinet The genus Acacia ( Leguminosae,Mimosoideae ): its affinities as borne out by its pollen characters , 1990 .

[15]  P. Herendeen,et al.  Reproductive and Vegetative Evidence for the Occurrence of Crudia (Leguminosae, Caesalpinioideae) in the Eocene of Southeastern North America , 1990, Botanical Gazette.

[16]  P. Herendeen,et al.  Caesalpinia subgenus Mezoneuron (Leguminosae, Caesalpinioideae) from the Tertiary of North America , 1991 .

[17]  P. Herendeen Papilionoid flowers from the early Eocene of southeastern North America , 1992 .

[18]  P. Herendeen Early caesalpinioid fruits from the Palaeogene of southern England , 1992 .

[19]  P. Herendeen The fossil history of the Leguminosae from the Eocene of southeastern North America , 1992 .

[20]  P. Herendeen The fossil history of the Leguminosae: Phylogenetic and biogeographic implications , 1992 .

[21]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[22]  R. Cano,et al.  DNA from an extinct plant , 1993, Nature.

[23]  Markus E. Lautenbacher,et al.  TRACER version 1.1: A mathematica package for γ-algebra in arbitrary dimensions , 1993 .

[24]  I. W. Southon,et al.  Plants and their constituents , 1994 .

[25]  F. Breteler The boundary between Amherstieae and Detarieae (Caesalpinioideae). , 1995 .

[26]  R. Macphee,et al.  Age and Paleogeographical Origin of Dominican Amber , 1996, Science.

[27]  M. Wink,et al.  Molecular evolution of the Leguminosae: phylogeny of the three subfamilies based on rbcL-sequences , 1996 .

[28]  W. John Kress,et al.  Angiosperm Phylogeny Inferred from 18S Ribosomal DNA Sequences , 1997 .

[29]  J. Doyle,et al.  A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. , 1997, American journal of botany.

[30]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[31]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[32]  F. Breteler A revision of prioria, including Gossweilerodendron, Kingiodendron, Oxystigma, and Pterygopodium (Leguminosae-Caesalpinioideae-Detarieae) with emphasis on Africa , 1999 .

[33]  J. Wieringa Monopetalanthus exit. : a systematic study of Aphanocalyx, Bikinia, Icuria, Michelsonia and Tetraberlinia (Leguminosae, Casalpinioideae , 1999 .

[34]  G. Poinar,et al.  The Amber Forest: A Reconstruction of a Vanished World. , 1999 .

[35]  S. Kelchner The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics , 2000 .

[36]  Mark P. Simmons,et al.  Gaps as characters in sequence-based phylogenetic analyses. , 2000, Systematic biology.

[37]  R. Pennington,et al.  Africa, the Odd Man Out: Molecular Biogeography of Dalbergioid Legumes (Fabaceae) Suggests Otherwise , 2000 .

[38]  Gwilym P. Lewis,et al.  Legumes of the World , 2000 .

[39]  M. Sanderson,et al.  Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplast trnK/matK sequences and its implications for evolutionary patterns in Papilionoideae. , 2000, American journal of botany.

[40]  P. Herendeen,et al.  Fossil legumes from the Middle Eocene (46.0 Ma) Mahenge Flora of Singida, Tanzania. , 2000, American journal of botany.

[41]  F. Forest,et al.  Phylogenetic Relationships in the Caesalpinioideae (Leguminosae) as Inferred from Chloroplast trnL Intron Sequences , 2009 .

[42]  M. Sanderson,et al.  ABSOLUTE DIVERSIFICATION RATES IN ANGIOSPERM CLADES , 2001, Evolution; international journal of organic evolution.

[43]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[44]  J. Doyle,et al.  rbcL and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies , 2009 .

[45]  J. Huelsenbeck,et al.  MRBAYES : Bayesian inference of phylogeny , 2001 .

[46]  R. Pennington,et al.  Phylogenetic Relationships of Basal Papilionoid Legumes Based Upon Sequences of the Chloroplast trnL Intron , 2009 .

[47]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[48]  A. Bruneau,et al.  Phylogenetic analysis of a polyphyletic African genus of Caesalpinioideae (Leguminosae): Monopetalanthus Harms , 2002, Plant Systematics and Evolution.

[49]  S. Tucker Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae). 2. Zygomorphic taxa with petal and stamen suppression. , 2002, American journal of botany.

[50]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[51]  John Healy,et al.  GapCoder automates the use of indel characters in phylogenetic analysis , 2003, BMC Bioinformatics.

[52]  S. Tucker Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae). 1. Radially symmetrical taxa lacking organ suppression. , 2002, American journal of botany.

[53]  Pamela S Soltis,et al.  Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Cevallos-Ferriz,et al.  Bauhcis moranii gen. et sp. nov. (Cercideae, Caesalpinieae), an Oligocene plant from Tepexi de Rodrı́guez, Puebla, Mex., with leaf architecture similar to Bauhinia and Cercis , 2002 .

[55]  D. D. Franceschi,et al.  Origine de l'ambre des faciès sparnaciens (Éocène inférieur) du Bassin de Paris : le bois de l'arbre producteur , 2003 .

[56]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[57]  J. H. Langenheim,et al.  Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany , 2003 .

[58]  J. Hawkins,et al.  A phylogenetic investigation of the Peltophorum group (Caesalpinieae: Leguminosae) , 2003 .

[59]  M. Luckow,et al.  A PHYLOGENETIC ANALYSIS OF THE MIMOSOIDEAE (LEGUMINOSAE) BASED ON CHLOROPLAST DNA SEQUENCE DATA , 2003 .

[60]  S. Tucker Floral Development in Legumes1 , 2003, Plant Physiology.

[61]  G. Lewis,et al.  New Combinations in Pomaria (Caesalpinioideae: Leguminosae) , 2003 .

[62]  Martin F. W Ojciechowski RECONSTRUCTING THE PHYLOGENY OF LEGUMES (LEGUMINOSAE): AN EARLY 21 ST CENTURY PERSPECTIVE , 2003 .

[63]  P. Herendeen,et al.  Floral Morphology in Caesalpinioid Legumes: Testing the Monophyly of the “Umtiza Clade” , 2003, International Journal of Plant Sciences.

[64]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[65]  Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania , 2004 .

[66]  M. Sanderson,et al.  A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. , 2004, American journal of botany.

[67]  A. Bruneau,et al.  Phylogenetic Utility of the LEAFY/FLORICAULA Gene in the Caesalpinioideae (Leguminosae): Gene Duplication and a Novel Insertion , 2004 .

[68]  M. Gandolfo,et al.  Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. , 2004, American journal of botany.

[69]  M. Sanderson,et al.  Molecular evidence on plant divergence times. , 2004, American journal of botany.

[70]  R. Pennington,et al.  Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[71]  S. Magallón Dating Lineages: Molecular and Paleontological Approaches to the Temporal Framework of Clades , 2004, International Journal of Plant Sciences.

[72]  M. Sanderson,et al.  Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  H. Shaffer,et al.  Assessing Concordance of Fossil Calibration Points in Molecular Clock Studies: An Example Using Turtles , 2004, The American Naturalist.

[74]  P. C. van Welzen,et al.  Plant Diversity and Complexity Patterns Local, Regional and Global Dimensions , 2005 .

[75]  I. Friis,et al.  Global distribution patterns of the Leguminosae: insights from recent phylogenies. , 2005 .

[76]  Sergei L. Kosakovsky Pond,et al.  HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..

[77]  S. Cevallos-Ferriz,et al.  Diverse Assemblage of Eocene and Oligocene Leguminosae from Mexico , 2005, International Journal of Plant Sciences.

[78]  Dianxiang Zhang,et al.  Bauhinia larsenii, a fossil legume from Guangxi, China , 2005 .

[79]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[80]  M. Chase,et al.  Teasing Apart Molecular- Versus Fossil-based Error Estimates when Dating Phylogenetic Trees: A Case Study in the Birch Family (Betulaceae) , 2005 .

[81]  J. Hawkins,et al.  A phylogenetic reappraisal of the Peltophorum group (Caesalpinieae: Leguminosae) based on the chloroplast trnL-F, rbcL and rps16 sequence data. , 2005, American journal of botany.

[82]  M. Sanderson,et al.  ANGIOSPERM DIVERGENCE TIMES: THE EFFECT OF GENES, CODON POSITIONS, AND TIME CONSTRAINTS , 2005, Evolution; international journal of organic evolution.

[83]  E. Conti,et al.  Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. , 2006, American journal of botany.

[84]  Frank Rutschmann,et al.  Molecular dating of phylogenetic trees : A brief review of current methods that estimate divergence times , 2022 .

[85]  M. Luckow,et al.  Development of nuclear gene-derived molecular markers linked to legume genetic maps , 2006, Molecular Genetics and Genomics.

[86]  P. Herendeen,et al.  Morphology and Phylogenetic Analysis of Paloue and Related Genera in the Brownea Clade (Detarieae, Caesalpinioideae) , 2006, International Journal of Plant Sciences.

[87]  S. Joly,et al.  Polyploid and hybrid evolution in roses east of the Rocky Mountains. , 2006, American journal of botany.

[88]  A. Bruneau,et al.  Relationships Among Resin-Producing Detarieae s.l. (Leguminosae) as Inferred by Molecular Data , 2007 .

[89]  E. Conti,et al.  Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. , 2007, Systematic biology.

[90]  Michael S. Y. Lee,et al.  Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. , 2007, Systematic biology.

[91]  J. Sprent Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. , 2007, The New phytologist.

[92]  J. Muller Fossil pollen records of extant angiosperms , 2008, The Botanical Review.

[93]  R. Barneby Neotropical Fabales at NY: asides and oversights , 1996, Brittonia.

[94]  J. Pirani,et al.  Review of plant biogeographic studies in Brazil , 2009 .

[95]  G. Lewis,et al.  Pollen morphology of the Dimorphandra group (Leguminosae, Caesalpinioideae) , 2009 .

[96]  F. Forest,et al.  The genus Bauhinia s.l. (Leguminosae): a phylogeny based on the plastid trnL–trnF region , 2009 .

[97]  R. Pennington,et al.  Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire , 2009, Proceedings of the National Academy of Sciences.

[98]  M. A. Bello,et al.  Elusive Relationships Within Order Fabales: Phylogenetic Analyses Using matK and rbcL Sequence Data1 , 2009 .

[99]  É. A. Paiva Occurrence, structure and functional aspects of the colleters of Copaifera langsdorffii Desf. (Fabaceae, Caesalpinioideae). , 2009, Comptes rendus biologies.

[100]  P. Herendeen,et al.  Morphological evolution in the variable resin-producing Detarieae (Fabaceae): do morphological characters retain a phylogenetic signal? , 2009, Annals of botany.