Phylogenetic patterns and diversification in the caesalpinioid legumes
暂无分享,去创建一个
[1] D. Jarzen,et al. Studies in Neotropical Paleobotany. I. The Oligocene Communities of Puerto Rico , 1969 .
[2] D. Mildenhall. Fossil pollen of Acacia type from New Zealand , 1972 .
[3] W. Crepet,et al. INVESTIGATIONS OF ANGIOSPERMS FROM THE EOCENE OF NORTH AMERICA: A MIMOSOID INFLORESCENCE , 1977 .
[4] E. Pahlich,et al. A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .
[5] Joseph Felsenstein,et al. A likelihood approach to character weighting and what it tells us about parsimony and compatibility , 1981 .
[6] Peter H. Raven,et al. Advances in legume systematics , 1981 .
[7] W. Crepet,et al. The Diversification of the Leguminosae: First Fossil Evidence of the Mimosoideae and Papilionoideae , 1985, Science.
[8] A. Graham. Studies in Neotropical Paleobotany. IV. The Eocene Communities of Panama , 1985 .
[9] W. Crepet,et al. PRIMITIVE MIMOSOID FLOWERS FROM THE PALEOCENE‐EOCENE AND THEIR SYSTEMATIC AND EVOLUTIONARY IMPLICATIONS , 1986 .
[10] D. Hastings,et al. The new explorers, a one-act play , 1986 .
[11] G. Cowles. Studies of Mascarene Island birds: The fossil record , 1987 .
[12] A. Graham. Studies in neotropical paleobotany. VI: The lower Miocene communities of Panama: the Cucaracha formation , 1988 .
[13] M. Crawley. Palaeocene wood from the Republic of Mali , 1988 .
[14] P. Guinet. The genus Acacia ( Leguminosae,Mimosoideae ): its affinities as borne out by its pollen characters , 1990 .
[15] P. Herendeen,et al. Reproductive and Vegetative Evidence for the Occurrence of Crudia (Leguminosae, Caesalpinioideae) in the Eocene of Southeastern North America , 1990, Botanical Gazette.
[16] P. Herendeen,et al. Caesalpinia subgenus Mezoneuron (Leguminosae, Caesalpinioideae) from the Tertiary of North America , 1991 .
[17] P. Herendeen. Papilionoid flowers from the early Eocene of southeastern North America , 1992 .
[18] P. Herendeen. Early caesalpinioid fruits from the Palaeogene of southern England , 1992 .
[19] P. Herendeen. The fossil history of the Leguminosae from the Eocene of southeastern North America , 1992 .
[20] P. Herendeen. The fossil history of the Leguminosae: Phylogenetic and biogeographic implications , 1992 .
[21] James F. Smith. Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .
[22] R. Cano,et al. DNA from an extinct plant , 1993, Nature.
[23] Markus E. Lautenbacher,et al. TRACER version 1.1: A mathematica package for γ-algebra in arbitrary dimensions , 1993 .
[24] I. W. Southon,et al. Plants and their constituents , 1994 .
[25] F. Breteler. The boundary between Amherstieae and Detarieae (Caesalpinioideae). , 1995 .
[26] R. Macphee,et al. Age and Paleogeographical Origin of Dominican Amber , 1996, Science.
[27] M. Wink,et al. Molecular evolution of the Leguminosae: phylogeny of the three subfamilies based on rbcL-sequences , 1996 .
[28] W. John Kress,et al. Angiosperm Phylogeny Inferred from 18S Ribosomal DNA Sequences , 1997 .
[29] J. Doyle,et al. A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. , 1997, American journal of botany.
[30] J. Thompson,et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.
[31] David Posada,et al. MODELTEST: testing the model of DNA substitution , 1998, Bioinform..
[32] F. Breteler. A revision of prioria, including Gossweilerodendron, Kingiodendron, Oxystigma, and Pterygopodium (Leguminosae-Caesalpinioideae-Detarieae) with emphasis on Africa , 1999 .
[33] J. Wieringa. Monopetalanthus exit. : a systematic study of Aphanocalyx, Bikinia, Icuria, Michelsonia and Tetraberlinia (Leguminosae, Casalpinioideae , 1999 .
[34] G. Poinar,et al. The Amber Forest: A Reconstruction of a Vanished World. , 1999 .
[35] S. Kelchner. The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics , 2000 .
[36] Mark P. Simmons,et al. Gaps as characters in sequence-based phylogenetic analyses. , 2000, Systematic biology.
[37] R. Pennington,et al. Africa, the Odd Man Out: Molecular Biogeography of Dalbergioid Legumes (Fabaceae) Suggests Otherwise , 2000 .
[38] Gwilym P. Lewis,et al. Legumes of the World , 2000 .
[39] M. Sanderson,et al. Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplast trnK/matK sequences and its implications for evolutionary patterns in Papilionoideae. , 2000, American journal of botany.
[40] P. Herendeen,et al. Fossil legumes from the Middle Eocene (46.0 Ma) Mahenge Flora of Singida, Tanzania. , 2000, American journal of botany.
[41] F. Forest,et al. Phylogenetic Relationships in the Caesalpinioideae (Leguminosae) as Inferred from Chloroplast trnL Intron Sequences , 2009 .
[42] M. Sanderson,et al. ABSOLUTE DIVERSIFICATION RATES IN ANGIOSPERM CLADES , 2001, Evolution; international journal of organic evolution.
[43] John P. Huelsenbeck,et al. MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..
[44] J. Doyle,et al. rbcL and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies , 2009 .
[45] J. Huelsenbeck,et al. MRBAYES : Bayesian inference of phylogeny , 2001 .
[46] R. Pennington,et al. Phylogenetic Relationships of Basal Papilionoid Legumes Based Upon Sequences of the Chloroplast trnL Intron , 2009 .
[47] M. Sanderson. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.
[48] A. Bruneau,et al. Phylogenetic analysis of a polyphyletic African genus of Caesalpinioideae (Leguminosae): Monopetalanthus Harms , 2002, Plant Systematics and Evolution.
[49] S. Tucker. Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae). 2. Zygomorphic taxa with petal and stamen suppression. , 2002, American journal of botany.
[50] D. Swofford. PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .
[51] John Healy,et al. GapCoder automates the use of indel characters in phylogenetic analysis , 2003, BMC Bioinformatics.
[52] S. Tucker. Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae). 1. Radially symmetrical taxa lacking organ suppression. , 2002, American journal of botany.
[53] Pamela S Soltis,et al. Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[54] S. Cevallos-Ferriz,et al. Bauhcis moranii gen. et sp. nov. (Cercideae, Caesalpinieae), an Oligocene plant from Tepexi de Rodrı́guez, Puebla, Mex., with leaf architecture similar to Bauhinia and Cercis , 2002 .
[55] D. D. Franceschi,et al. Origine de l'ambre des faciès sparnaciens (Éocène inférieur) du Bassin de Paris : le bois de l'arbre producteur , 2003 .
[56] Michael J. Sanderson,et al. R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..
[57] J. H. Langenheim,et al. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany , 2003 .
[58] J. Hawkins,et al. A phylogenetic investigation of the Peltophorum group (Caesalpinieae: Leguminosae) , 2003 .
[59] M. Luckow,et al. A PHYLOGENETIC ANALYSIS OF THE MIMOSOIDEAE (LEGUMINOSAE) BASED ON CHLOROPLAST DNA SEQUENCE DATA , 2003 .
[60] S. Tucker. Floral Development in Legumes1 , 2003, Plant Physiology.
[61] G. Lewis,et al. New Combinations in Pomaria (Caesalpinioideae: Leguminosae) , 2003 .
[62] Martin F. W Ojciechowski. RECONSTRUCTING THE PHYLOGENY OF LEGUMES (LEGUMINOSAE): AN EARLY 21 ST CENTURY PERSPECTIVE , 2003 .
[63] P. Herendeen,et al. Floral Morphology in Caesalpinioid Legumes: Testing the Monophyly of the “Umtiza Clade” , 2003, International Journal of Plant Sciences.
[64] Michael P. Cummings,et al. PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .
[65] Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania , 2004 .
[66] M. Sanderson,et al. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. , 2004, American journal of botany.
[67] A. Bruneau,et al. Phylogenetic Utility of the LEAFY/FLORICAULA Gene in the Caesalpinioideae (Leguminosae): Gene Duplication and a Novel Insertion , 2004 .
[68] M. Gandolfo,et al. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. , 2004, American journal of botany.
[69] M. Sanderson,et al. Molecular evidence on plant divergence times. , 2004, American journal of botany.
[70] R. Pennington,et al. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[71] S. Magallón. Dating Lineages: Molecular and Paleontological Approaches to the Temporal Framework of Clades , 2004, International Journal of Plant Sciences.
[72] M. Sanderson,et al. Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[73] H. Shaffer,et al. Assessing Concordance of Fossil Calibration Points in Molecular Clock Studies: An Example Using Turtles , 2004, The American Naturalist.
[74] P. C. van Welzen,et al. Plant Diversity and Complexity Patterns Local, Regional and Global Dimensions , 2005 .
[75] I. Friis,et al. Global distribution patterns of the Leguminosae: insights from recent phylogenies. , 2005 .
[76] Sergei L. Kosakovsky Pond,et al. HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..
[77] S. Cevallos-Ferriz,et al. Diverse Assemblage of Eocene and Oligocene Leguminosae from Mexico , 2005, International Journal of Plant Sciences.
[78] Dianxiang Zhang,et al. Bauhinia larsenii, a fossil legume from Guangxi, China , 2005 .
[79] M. Wojciechowski,et al. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.
[80] M. Chase,et al. Teasing Apart Molecular- Versus Fossil-based Error Estimates when Dating Phylogenetic Trees: A Case Study in the Birch Family (Betulaceae) , 2005 .
[81] J. Hawkins,et al. A phylogenetic reappraisal of the Peltophorum group (Caesalpinieae: Leguminosae) based on the chloroplast trnL-F, rbcL and rps16 sequence data. , 2005, American journal of botany.
[82] M. Sanderson,et al. ANGIOSPERM DIVERGENCE TIMES: THE EFFECT OF GENES, CODON POSITIONS, AND TIME CONSTRAINTS , 2005, Evolution; international journal of organic evolution.
[83] E. Conti,et al. Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. , 2006, American journal of botany.
[84] Frank Rutschmann,et al. Molecular dating of phylogenetic trees : A brief review of current methods that estimate divergence times , 2022 .
[85] M. Luckow,et al. Development of nuclear gene-derived molecular markers linked to legume genetic maps , 2006, Molecular Genetics and Genomics.
[86] P. Herendeen,et al. Morphology and Phylogenetic Analysis of Paloue and Related Genera in the Brownea Clade (Detarieae, Caesalpinioideae) , 2006, International Journal of Plant Sciences.
[87] S. Joly,et al. Polyploid and hybrid evolution in roses east of the Rocky Mountains. , 2006, American journal of botany.
[88] A. Bruneau,et al. Relationships Among Resin-Producing Detarieae s.l. (Leguminosae) as Inferred by Molecular Data , 2007 .
[89] E. Conti,et al. Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. , 2007, Systematic biology.
[90] Michael S. Y. Lee,et al. Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. , 2007, Systematic biology.
[91] J. Sprent. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. , 2007, The New phytologist.
[92] J. Muller. Fossil pollen records of extant angiosperms , 2008, The Botanical Review.
[93] R. Barneby. Neotropical Fabales at NY: asides and oversights , 1996, Brittonia.
[94] J. Pirani,et al. Review of plant biogeographic studies in Brazil , 2009 .
[95] G. Lewis,et al. Pollen morphology of the Dimorphandra group (Leguminosae, Caesalpinioideae) , 2009 .
[96] F. Forest,et al. The genus Bauhinia s.l. (Leguminosae): a phylogeny based on the plastid trnL–trnF region , 2009 .
[97] R. Pennington,et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire , 2009, Proceedings of the National Academy of Sciences.
[98] M. A. Bello,et al. Elusive Relationships Within Order Fabales: Phylogenetic Analyses Using matK and rbcL Sequence Data1 , 2009 .
[99] É. A. Paiva. Occurrence, structure and functional aspects of the colleters of Copaifera langsdorffii Desf. (Fabaceae, Caesalpinioideae). , 2009, Comptes rendus biologies.
[100] P. Herendeen,et al. Morphological evolution in the variable resin-producing Detarieae (Fabaceae): do morphological characters retain a phylogenetic signal? , 2009, Annals of botany.