Wide-field optical coherence tomography based microangiography for retinal imaging

[1]  S. Hayreh,et al.  Branch retinal vein occlusion: natural history of visual outcome. , 2014, JAMA ophthalmology.

[2]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[3]  Reza Motaghiannezam,et al.  In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm. , 2012, Investigative ophthalmology & visual science.

[4]  J. Schuman,et al.  Advanced imaging for glaucoma study: design, baseline characteristics, and inter-site comparison. , 2015, American journal of ophthalmology.

[5]  S. Kiss,et al.  Ultra-wide-field fluorescein angiography in retinal disease , 2014, Current opinion in ophthalmology.

[6]  Kohji Nishida,et al.  En-face high-penetration optical coherence tomography imaging in polypoidal choroidal vasculopathy , 2014, British Journal of Ophthalmology.

[7]  Clemett Rs,et al.  The visual prognosis in retinal branch vein occlusion. , 1973 .

[8]  P A Keane,et al.  Accuracy of retinal thickness measurements obtained with Cirrus optical coherence tomography , 2009, British Journal of Ophthalmology.

[9]  Ayyakkannu Manivannan,et al.  Ultra-wide-field fluorescein angiography of the ocular fundus. , 2005, American journal of ophthalmology.

[10]  Sophie Kubach,et al.  Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking , 2015, Journal of biomedical optics.

[11]  Lloyd Paul Aiello,et al.  Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema. , 2008, Investigative ophthalmology & visual science.

[12]  Ruikang K. Wang,et al.  Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Ruikang K. Wang,et al.  Swept-source OCT angiography of macular telangiectasia type 2. , 2014, Ophthalmic surgery, lasers & imaging retina.

[14]  S. Kiss,et al.  DETECTION AND MONITORING OF SICKLE CELL RETINOPATHY USING ULTRA WIDE-FIELD COLOR PHOTOGRAPHY AND FLUORESCEIN ANGIOGRAPHY , 2011, Retina.

[15]  Szilárd Kiss,et al.  ULTRA–WIDE-FIELD ANGIOGRAPHY IMPROVES THE DETECTION AND CLASSIFICATION OF DIABETIC RETINOPATHY , 2012, Retina.

[16]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[17]  Cecilia S Lee,et al.  Reevaluating the definition of intraretinal microvascular abnormalities and neovascularization elsewhere in diabetic retinopathy using optical coherence tomography and fluorescein angiography. , 2015, American journal of ophthalmology.

[18]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[19]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[20]  Q. Nguyen,et al.  Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. , 2013, Ophthalmology.

[21]  Ruikang K. Wang,et al.  Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. , 2014, Ophthalmic surgery, lasers & imaging retina.

[22]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[23]  P. Stanga,et al.  Fourier-domain optical coherence tomography evaluation of retinal and optic nerve head neovascularisation in proliferative diabetic retinopathy , 2013, British Journal of Ophthalmology.

[24]  E. Kohner,et al.  The visual prognosis in retinal branch vein occlusion. , 1973, Transactions of the ophthalmological societies of the United Kingdom.

[25]  S. G. Joe,et al.  The relationship between foveal ischemia and spectral-domain optical coherence tomography findings in ischemic diabetic macular edema. , 2013, Investigative ophthalmology & visual science.

[26]  James G. Fujimoto,et al.  Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns , 2012, Biomedical optics express.

[27]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[28]  R. Spaide,et al.  Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. , 2015, JAMA ophthalmology.

[29]  Simon S. Gao,et al.  Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. , 2015, Biomedical optics express.

[30]  Y. Li,et al.  Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa , 2014, International journal of molecular sciences.

[31]  Larry D. Hubbard,et al.  Color photography vs fluorescein angiography in the detection of diabetic retinopathy in the diabetes control and complications trial. The Diabetes Control and Complications Trial Research Group. , 1987, Archives of ophthalmology.

[32]  Won Ki Lee,et al.  EVEREST STUDY: Efficacy and Safety of Verteporfin Photodynamic Therapy in Combination with Ranibizumab or Alone Versus Ranibizumab Monotherapy in Patients with Symptomatic Macular Polypoidal Choroidal Vasculopathy , 2012, Retina.

[33]  L. Yannuzzi,et al.  Polypoidal choroidal vasculopathy: a review. , 2010, Survey of ophthalmology.

[34]  L A Yannuzzi,et al.  IDIOPATHIC POLYPOIDAL CHOROIDAL VASCULOPATHY (IPCV) , 1990, Retina.

[35]  Ruikang K. Wang,et al.  User-guided segmentation for volumetric retinal optical coherence tomography images. , 2014, Journal of biomedical optics.

[36]  Ruikang K. Wang,et al.  Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. , 2015, Biomedical optics express.

[37]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[38]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[39]  Adnan Tufail,et al.  Evaluation of age-related macular degeneration with optical coherence tomography. , 2012, Survey of ophthalmology.

[40]  D. Finkelstein,et al.  Ischemic macular edema. Recognition and favorable natural history in branch vein occlusion. , 1992, Archives of ophthalmology.

[41]  Jennifer K. Sun,et al.  Ultra-wide Field Retinal Imaging in Detection, Classification, and Management of Diabetic Retinopathy , 2012, Seminars in Ophthalmology.

[42]  Kang Zhang,et al.  Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). , 2013, Ophthalmology.

[43]  Robert J Zawadzki,et al.  Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. , 2009, Optics express.

[44]  Martin Leahy,et al.  In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT) , 2011, Biomedical optics express.

[45]  A M Mansour,et al.  FOVEAL AVASCULAR ZONE IN DIABETES MELLITUS , 1993, Retina.