General triangular midpoint subdivision

Smoothness of general triangular midpoint surfaces for arbitrary control meshes. C 1 analysis tools for infinite classes of triangular subdivision schemes.New spectral properties of subdivision matrices.Smoothness analysis of Loop subdivision surfaces. In this paper, we introduce triangular subdivision operators which are composed of a refinement operator and several averaging operators, where the refinement operator splits each triangle uniformly into four congruent triangles and in each averaging operation, every vertex will be replaced by a convex combination of itself and its neighboring vertices. These operators form an infinite class of triangular subdivision schemes including Loop's algorithm with a restricted parameter range and the midpoint schemes for triangular meshes. We analyze the smoothness of the resulting subdivision surfaces at their regular and extraordinary points by generalizing an established technique for analyzing midpoint subdivision on quadrilateral meshes. General triangular midpoint subdivision surfaces are smooth at all regular points and they are also smooth at extraordinary points under certain conditions. We show some general triangular subdivision surfaces and compare them with Loop subdivision surfaces.

[1]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[2]  Wolfgang Böhm Sudividing multivariate splines , 1983 .

[3]  J. Peters,et al.  Analysis of Algorithms Generalizing B-Spline Subdivision , 1998 .

[4]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[5]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[6]  G. Umlauf Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .

[7]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[8]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[9]  Georg Umlauf,et al.  Analyzing a generalized Loop subdivision scheme , 2007, Computing.

[10]  C. Micchelli,et al.  Uniform refinement of curves , 1989 .

[11]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[12]  H. Prautzsch,et al.  Refinement and subdivision for spaces of integer translates of a compactly supported function , 1989 .

[13]  Nira Dyn,et al.  Analysis of uniform binary subdivision schemes for curve design , 1991 .

[14]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[15]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[16]  C. D. Boor,et al.  Box splines , 1993 .

[17]  Qi Chen,et al.  Analyzing midpoint subdivision , 2009, Comput. Aided Geom. Des..

[18]  H. Prautzsch,et al.  Subdivision by WAVES – Weighted AVEraging Schemes , 2013 .

[19]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Charles A. Micchelli,et al.  Computing surfaces invariant under subdivision , 1987, Comput. Aided Geom. Des..

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.