Structural variations of photosystem I-antenna supercomplex in response to adaptations to different light environments.

[1]  Structural basis for energy and electron transfer of the photosystem I–IsiA–flavodoxin supercomplex , 2020, Nature Plants.

[2]  N. Adir,et al.  The amazing phycobilisome. , 2020, Biochimica et biophysica acta. Bioenergetics.

[3]  Mei Li,et al.  Structural analysis and comparison of light-harvesting complexes I and II. , 2020, Biochimica et biophysica acta. Bioenergetics.

[4]  M. Ikeuchi,et al.  Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy , 2019, Nature Communications.

[5]  N. Gao,et al.  Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria , 2019, Nature Plants.

[6]  Jian-Ren Shen,et al.  The pigment-protein network of a diatom photosystem II–light-harvesting antenna supercomplex , 2019, Science.

[7]  N. Miyazaki,et al.  Structural basis for energy harvesting and dissipation in a diatom PSII–FCPII supercomplex , 2019, Nature Plants.

[8]  N. Miyazaki,et al.  Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I , 2019, Nature Plants.

[9]  Dewight R Williams,et al.  The structure of the stress-induced photosystem I–IsiA antenna supercomplex , 2019, Nature Structural & Molecular Biology.

[10]  Jian-Ren Shen,et al.  Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits , 2019, Nature Plants.

[11]  Jun Chen,et al.  Phycobiliproteins: Molecular structure, production, applications, and prospects. , 2019, Biotechnology advances.

[12]  M. Li,et al.  Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria , 2019, Nature Plants.

[13]  T. Tomizaki,et al.  Structural basis for blue-green light harvesting and energy dissipation in diatoms , 2019, Science.

[14]  K. Murata,et al.  Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii , 2019, The Journal of Biological Chemistry.

[15]  Antenna arrangement and energy transfer pathways of a green algal photosystem-I–LHCI supercomplex , 2019, Nature Plants.

[16]  N. Nelson,et al.  Structure and function of photosystem I in Cyanidioschyzon merolae , 2019, Photosynthesis Research.

[17]  N. Nelson,et al.  Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. , 2018, Biochimica et biophysica acta. Bioenergetics.

[18]  M. Hippler,et al.  Configuration of Ten Light-Harvesting Chlorophyll a/b Complex I Subunits in Chlamydomonas reinhardtii Photosystem I , 2018, Plant Physiology.

[19]  Mei Li,et al.  Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II , 2018, Science.

[20]  Jian-Ren Shen,et al.  Unique organization of photosystem I–light-harvesting supercomplex revealed by cryo-EM from a red alga , 2018, Proceedings of the National Academy of Sciences.

[21]  N. Nelson,et al.  Structure of the plant photosystem I supercomplex at 2.6 Å resolution , 2017, Nature Plants.

[22]  Jian-Ren Shen,et al.  Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex. , 2016, Current opinion in structural biology.

[23]  M. Li,et al.  Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. , 2016, Biochimica et biophysica acta.

[24]  N. Nelson,et al.  Structure and energy transfer in photosystems of oxygenic photosynthesis. , 2015, Annual review of biochemistry.

[25]  Jian-Ren Shen,et al.  Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex , 2015, Science.

[26]  I. V. van Stokkum,et al.  PSI–LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency , 2015, Biochimica et biophysica acta.

[27]  E. Boekema,et al.  Characterization and Evolution of Tetrameric Photosystem I from the Thermophilic Cyanobacterium Chroococcidiopsis sp TS-821[C][W][OPEN] , 2014, Plant Cell.

[28]  N. Nelson Evolution of photosystem I and the control of global enthalpy in an oxidizing world , 2013, Photosynthesis Research.

[29]  A. Busch,et al.  The structure and function of eukaryotic photosystem I. , 2011, Biochimica et biophysica acta.

[30]  Robert Eugene Blankenship,et al.  Evolution of photosynthesis. , 2011, Annual review of plant biology.

[31]  M. Ikeuchi,et al.  Novel supercomplex organization of photosystem I in Anabaena and Cyanophora paradoxa. , 2011, Plant & cell physiology.

[32]  P. Fromme,et al.  Genetic analysis of the Photosystem I subunits from the red alga, Galdieria sulphuraria. , 2009, Biochimica et biophysica acta.

[33]  P. Fromme,et al.  Structure of Plant Photosystem I Revealed by Theoretical Modeling*[boxs] , 2005, Journal of Biological Chemistry.

[34]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[35]  H. Teramoto,et al.  The light-harvesting complex of photosystem I in Chlamydomonas reinhardtii: protein composition, gene structures and phylogenic implications. , 2004, Plant & cell physiology.

[36]  Nathan Nelson,et al.  Crystal structure of plant photosystem I , 2003, Nature.

[37]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[38]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[39]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[40]  B. Green,et al.  Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation , 1994, Nature.

[41]  L. Sherman,et al.  The Highly Abundant Chlorophyll-Protein Complex of Iron-Deficient Synechococcus sp. PCC7942 (CP43[prime]) Is Encoded by the isiA Gene , 1993, Plant physiology.

[42]  N. Straus,et al.  Characterization of a cyanobacterial iron stress-induced gene similar to psbC , 1988, Journal of bacteriology.