A fifth-order finite volume weighted compact scheme for solving one-dimensional Burgers' equation

In the present paper, a high-order finite volume compact scheme is proposed to solve one dimensional Burgers' equation. The nonlinear advective terms are computed by the fifth-order finite volume weighted upwind compact scheme, in which the nonlinear weighted essentially non-oscillatory weights are coupled with lower order compact stencils. The diffusive terms are discretized by using the finite volume six-order Pade scheme. The strong stability preserving third-order Runge-Kutta time discretizations is used in this work. Numerical results are compared with the exact and some existing numerical solutions to demonstrate the essentially non-oscillatory and high resolution of the proposed method. The numerical results are shown to be more accurate than some numerical results given in the literature.

[1]  R. C. Mittal,et al.  A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers' equation , 2013, Appl. Math. Comput..

[2]  Ashish Awasthi,et al.  Efficient numerical techniques for Burgers' equation , 2015, Appl. Math. Comput..

[3]  Emil M. Constantinescu,et al.  Efficient Implementation of Nonlinear Compact Schemes on Massively Parallel Platforms , 2015, SIAM J. Sci. Comput..

[4]  Chi-Wang Shu,et al.  A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes , 2015, J. Comput. Phys..

[5]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[6]  George W. Platzman,et al.  A table of solutions of the one-dimensional Burgers equation , 1972 .

[7]  Marcelo H. Kobayashi,et al.  Regular Article: On a Class of Padé Finite Volume Methods , 1999 .

[8]  H. A. Hosham,et al.  Fourth-order finite difference method for solving Burgers' equation , 2005, Appl. Math. Comput..

[9]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[10]  Ram Jiwari,et al.  A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation , 2012, Comput. Phys. Commun..

[11]  Sergio Pirozzoli,et al.  Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction , 2002 .

[12]  Wai-Sun Don,et al.  High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws , 2011, J. Comput. Phys..

[13]  S. Kumar,et al.  Contemporary review of techniques for the solution of nonlinear Burgers equation , 2012, J. Comput. Sci..

[14]  Jianping Wang,et al.  A predictor-corrector compact finite difference scheme for Burgers' equation , 2012, Appl. Math. Comput..

[15]  Xiaogang Deng,et al.  Developing high-order weighted compact nonlinear schemes , 2000 .

[16]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[17]  W. L. Wood An exact solution for Burger's equation , 2006 .

[18]  Ram Jiwari,et al.  A differential quadrature method for numerical solutions of Burgers'‐type equations , 2012 .

[19]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[20]  Mustafa Gülsu,et al.  A finite difference approach for solution of Burgers' equation , 2006, Appl. Math. Comput..

[21]  Hiroshi Maekawa,et al.  Compact High-Order Accurate Nonlinear Schemes , 1997 .

[22]  E. Hopf,et al.  The Partial Differential Equation u_i + uu_x = μu_t , 1950 .

[23]  James D. Baeder,et al.  Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws , 2012, SIAM J. Sci. Comput..

[24]  Yan Guo,et al.  A Maximum-Principle-Satisfying High-Order Finite Volume Compact WENO Scheme for Scalar Conservation Laws with Applications in Incompressible Flows , 2014, J. Sci. Comput..

[25]  Min Xu,et al.  A novel numerical scheme for solving Burgers' equation , 2011, Appl. Math. Comput..

[26]  Asai Asaithambi,et al.  Numerical solution of the Burgers' equation by automatic differentiation , 2010, Appl. Math. Comput..

[27]  Ishfaq Ahmad Ganaie,et al.  Numerical solution of Burgers' equation by cubic Hermite collocation method , 2014, Appl. Math. Comput..

[28]  S. Harris,et al.  Sonic shocks governed by the modified Burgers' equation , 1996, European Journal of Applied Mathematics.

[29]  Li Jiang,et al.  Weighted Compact Scheme for Shock Capturing , 2001 .

[30]  Marjan Uddin,et al.  On the numerical solution of nonlinear Burgers'-type equations using meshless method of lines , 2012, Appl. Math. Comput..

[31]  A. R. Mitchell,et al.  Product Approximation for Non-linear Problems in the Finite Element Method , 1981 .

[32]  Wenyuan Liao,et al.  An implicit fourth-order compact finite difference scheme for one-dimensional Burgers' equation , 2008, Appl. Math. Comput..

[33]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[34]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[35]  Ram Jiwari,et al.  A hybrid numerical scheme for the numerical solution of the Burgers' equation , 2015, Comput. Phys. Commun..

[36]  R. C. Mittal,et al.  Numerical solutions of nonlinear Burgers' equation with modified cubic B-splines collocation method , 2012, Appl. Math. Comput..

[37]  Yan Guo,et al.  A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations , 2014, J. Comput. Phys..

[38]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[39]  Alper Korkmaz,et al.  Polynomial based differential quadrature method for numerical solution of nonlinear Burgers' equation , 2011, J. Frankl. Inst..

[40]  Chi-Wang Shu,et al.  A new class of central compact schemes with spectral-like resolution I: Linear schemes , 2013, J. Comput. Phys..

[41]  Manoj Kumar,et al.  A composite numerical scheme for the numerical simulation of coupled Burgers' equation , 2014, Comput. Phys. Commun..

[42]  Murat Sari,et al.  A sixth-order compact finite difference scheme to the numerical solutions of Burgers' equation , 2009, Appl. Math. Comput..

[43]  Marzio Piller,et al.  Compact finite volume schemes on boundary-fitted grids , 2008, J. Comput. Phys..

[44]  Idris Dag,et al.  A numerical solution of the Burgers' equation using cubic B-splines , 2005, Appl. Math. Comput..

[45]  Ram Jiwari,et al.  A numerical scheme based on differential quadrature method to solve time dependent Burgers' equation , 2012 .

[46]  Yinnian He,et al.  The local discontinuous Galerkin finite element method for Burger's equation , 2011, Math. Comput. Model..