Quadrature direct digital frequency synthesizers using interpolation-based angle rotation

This paper describes a quadrature direct digital frequency synthesizer (QDDFS) architecture based on a new phase-to-sine conversion technique. The proposed technique uses polynomial interpolation and rotational transformation in a fine/coarse approach, achieving high-resolution output with a wide spurious-free dynamic range (SFDR). The QDDFS with this technique requires small-sized lookup tables and a simple computational engine. The fine/coarse decomposition significantly reduces the size of required lookup tables, and the polynomial interpolation enables accurate approximation of cosine and sine values. Two prototype QDDFS ICs were fabricated in 0.35-/spl mu/m CMOS. The final prototype IC produces 16-b cosine and sine outputs with a spectral purity greater than 100-dB. It has a frequency tuning resolution of 0.03-Hz at a 150-MHz sampling rate and consumes 350-mW with a 3.0-V power supply.

[1]  C. W. Farrow,et al.  A continuously variable digital delay element , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[2]  H. Samueli,et al.  An Analysis of the Output Spectrum of Direct Digital Frequency Synthesizers in the Presence of Phase-Accumulator Truncation , 1987, 41st Annual Symposium on Frequency Control.

[3]  Beomsup Kim,et al.  A 16 b quadrature direct digital frequency synthesizer using interpolative angle rotation algorithm , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[4]  Michael J. Flanagan,et al.  Spur-reduced digital sinusoid synthesis , 1993, IEEE Trans. Commun..

[5]  A. Torosyan,et al.  A 300 MHz quadrature direct digital synthesizer/mixer in 0.25 /spl mu/m CMOS , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[6]  F. Cardells-Tormo,et al.  Area-optimized implementation of quadrature direct digital frequency synthesizers on LUT-based FPGAs , 2003 .

[7]  Hassan M. Ahmed,et al.  Efficient elementary function generation with multipliers , 1989, Proceedings of 9th Symposium on Computer Arithmetic.

[8]  A. Y. Kwentus,et al.  A 100-MHz, 16-b, direct digital frequency synthesizer with a 100-dBc spurious-free dynamic range , 1999, IEEE J. Solid State Circuits.

[9]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[10]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[11]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[12]  H. Meuth,et al.  Numerically controlled oscillators with hybrid function generators , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  B. Gold,et al.  A digital frequency synthesizer , 1971 .

[14]  L. Rabiner,et al.  A digital signal processing approach to interpolation , 1973 .

[15]  R. J. van de Plassche,et al.  A 540-MHz 10-b polar-to-Cartesian converter , 1991 .

[16]  H. Samueli,et al.  A 150-MHz Direct Digital Frequency Synthesizer In 1.25/spl mu/m CMOS With -90dBc Spurious Performance , 1991 .