Nonparametric Clustering with Distance Dependent Hierarchies

The distance dependent Chinese restaurant process (ddCRP) provides a flexible framework for clustering data with temporal, spatial, or other structured dependencies. Here we model multiple groups of structured data, such as pixels within frames of a video sequence, or paragraphs within documents from a text corpus. We propose a hierarchical generalization of the ddCRP which clusters data within groups based on distances between data items, and couples clusters across groups via distances based on aggregate properties of these local clusters. Our hddCRP model subsumes previously proposed hierarchical extensions to the ddCRP, and allows more flexibility in modeling complex data. This flexibility poses a challenging inference problem, and we derive a MCMC method that makes coordinated changes to data assignments both within and between local clusters. We demonstrate the effectiveness of our hddCRP on video segmentation and discourse modeling tasks, achieving results competitive with state-of-the-art methods.

[1]  John W. Fisher,et al.  A Video Representation Using Temporal Superpixels , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Michael I. Jordan,et al.  Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes , 2008, NIPS.

[3]  Mario Fritz,et al.  Multi-class Video Co-segmentation with a Generative Multi-video Model , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Dongwoo Kim,et al.  Accounting for data dependencies within a hierarchical dirichlet process mixture model , 2011, CIKM '11.

[5]  Jason A. Duan,et al.  Generalized spatial dirichlet process models , 2007 .

[6]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Hitoshi Isahara,et al.  A Statistical Model for Domain-Independent Text Segmentation , 2001, ACL.

[8]  D. Dunson,et al.  Kernel stick-breaking processes. , 2008, Biometrika.

[9]  Radford M. Neal,et al.  A Split-Merge Markov chain Monte Carlo Procedure for the Dirichlet Process Mixture Model , 2004 .

[10]  Yee Whye Teh,et al.  Spatial Normalized Gamma Processes , 2009, NIPS.

[11]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[12]  Tao Xiang,et al.  Background Subtraction with Dirichlet Processes , 2012, ECCV.

[13]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[14]  Andrew Zisserman,et al.  Three things everyone should know to improve object retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Edward H. Adelson,et al.  Human-assisted motion annotation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  David R. Karger,et al.  Content Modeling Using Latent Permutations , 2009, J. Artif. Intell. Res..

[17]  Antonio Torralba,et al.  Describing Visual Scenes Using Transformed Objects and Parts , 2008, International Journal of Computer Vision.

[18]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[19]  Christian Biemann,et al.  How Text Segmentation Algorithms Gain from Topic Models , 2012, NAACL.

[20]  Soumya Ghosh,et al.  From Deformations to Parts: Motion-based Segmentation of 3D Objects , 2012, NIPS.

[21]  Joachim M. Buhmann,et al.  Nonparametric Bayesian Image Segmentation , 2008, International Journal of Computer Vision.

[22]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  W. Eric L. Grimson,et al.  Construction of Dependent Dirichlet Processes based on Poisson Processes , 2010, NIPS.

[24]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[25]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[26]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[27]  Mei Han,et al.  Efficient hierarchical graph-based video segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Marti A. Hearst,et al.  A Critique and Improvement of an Evaluation Metric for Text Segmentation , 2002, CL.

[29]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[30]  Soumya Ghosh,et al.  Spatial distance dependent Chinese restaurant processes for image segmentation , 2011, NIPS.

[31]  Peter I. Frazier,et al.  Distance dependent Chinese restaurant processes , 2009, ICML.

[32]  Chong Wang,et al.  A Split-Merge MCMC Algorithm for the Hierarchical Dirichlet Process , 2012, ArXiv.

[33]  Regina Barzilay,et al.  Bayesian Unsupervised Topic Segmentation , 2008, EMNLP.

[34]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[35]  Christopher D. Manning,et al.  Spectral Chinese Restaurant Processes: Nonparametric Clustering Based on Similarities , 2011, AISTATS.