Gestion des données manquantes en analyse en composantes principales
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Karl Pearson F.R.S.. LIII. On lines and planes of closest fit to systems of points in space , 1901 .
[3] M. Healy,et al. Missing Values in Experiments Analysed on Automatic Computers , 1956 .
[4] Y. Escoufier. LE TRAITEMENT DES VARIABLES VECTORIELLES , 1973 .
[5] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[6] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[7] S. Zamir,et al. Lower Rank Approximation of Matrices by Least Squares With Any Choice of Weights , 1979 .
[8] J. C. van Houwelingen,et al. An Application of Factor Analysis With Missing Data , 1981 .
[9] Dorothy T. Thayer,et al. EM algorithms for ML factor analysis , 1982 .
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] R. Clarke,et al. Theory and Applications of Correspondence Analysis , 1985 .
[12] J. B. Denis,et al. Ajustements de modèles linéaires et bilinéaires sous contraintes linéaires avec données manquantes , 1991 .
[13] Darren T. Andrews,et al. Maximum likelihood principal component analysis , 1997 .
[14] Sam T. Roweis,et al. EM Algorithms for PCA and Sensible PCA , 1997, NIPS 1997.
[15] H. Kiers. Weighted least squares fitting using ordinary least squares algorithms , 1997 .
[16] Sam T. Roweis,et al. EM Algorithms for PCA and SPCA , 1997, NIPS.
[17] R. Manne,et al. Missing values in principal component analysis , 1998 .
[18] Rasmus Bro,et al. MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .
[19] Christopher M. Bishop,et al. Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.
[20] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[21] D. Massart,et al. Dealing with missing data: Part II , 2001 .
[22] John F. Canny,et al. Collaborative filtering with privacy via factor analysis , 2002, SIGIR '02.
[23] J. Schafer,et al. Missing data: our view of the state of the art. , 2002, Psychological methods.
[24] Nathan Srebro,et al. Learning with matrix factorizations , 2004 .
[25] Juha Karhunen,et al. Principal Component Analysis for Sparse High-Dimensional Data , 2007, ICONIP.
[26] Benjamin M. Marlin,et al. Missing Data Problems in Machine Learning , 2008 .
[27] Jérôme Pagès,et al. Testing the significance of the RV coefficient , 2008, Comput. Stat. Data Anal..
[28] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.