Novel-type nanostructured SiO2 antireflection coatings and their application in Cu(In,Ga)Se2 solar cells

[1]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[2]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .

[3]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[4]  U. Steiner,et al.  Nanophase-separated polymer films as high-performance antireflection coatings , 1999, Science.

[5]  H. Hattori,et al.  Anti‐Reflection Surface with Particle Coating Deposited by Electrostatic Attraction , 2001 .

[6]  H. Y. Koo,et al.  A Snowman‐like Array of Colloidal Dimers for Antireflecting Surfaces , 2004 .

[7]  Wyatt K. Metzger,et al.  Grain-boundary recombination in Cu(In,Ga)Se2 solar cells , 2005 .

[8]  Lei Zhai,et al.  Transparent superhydrophobic films based on silica nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  Ananth Dodabalapur,et al.  Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. , 2008, Journal of the American Chemical Society.

[10]  Giuseppe Gigli,et al.  Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[11]  Willem L. Vos,et al.  Broad‐band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods , 2009 .

[12]  L. Chi,et al.  Simple approach to wafer-scale self-cleaning antireflective silicon surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  F. Bessueille,et al.  Transfer of optically active polyelectrolyte multilayers by micro-contact printing , 2009 .

[14]  M. Rubner,et al.  Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates. , 2010, ACS nano.

[15]  M. Rubner,et al.  Layer-by-layer-assembled high-performance broadband antireflection coatings. , 2010, ACS applied materials & interfaces.

[16]  Bo-Tau Liu,et al.  Antireflective surface fabricated from colloidal silica nanoparticles , 2010 .

[17]  Plinio Innocenzi,et al.  Hydrophobic, Antireflective, Self-Cleaning, and Antifogging Sol−Gel Coatings: An Example of Multifunctional Nanostructured Materials for Photovoltaic Cells , 2010 .

[18]  Garikoitz Beobide,et al.  Using scanning probe microscopy to study the effect of molecular weight of poly(3-hexylthiophene) on the performance of poly(3-hexylthiophene):TiO2 nanorod photovoltaic devices , 2009 .

[19]  K. Sun,et al.  Growth of vertically aligned ZnO nanorod arrays as anti-reflection layer in silicon solar cell , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[20]  Young Min Song,et al.  Nano‐tailoring the Surface Structure for the Monolithic High‐Performance Antireflection Polymer Film , 2010, Advanced materials.

[21]  Baoping Zhang,et al.  Demonstration and Study of Photovoltaic Performances of InGaN p-i-n Homojunction Solar Cells , 2010, IEEE Journal of Quantum Electronics.

[22]  J. Yu,et al.  Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks , 2011 .

[23]  Akira Fujishima,et al.  Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[24]  Jun Shen,et al.  Ultrafast coloring-bleaching performance of nanoporous WO3-SiO2 gasochromic films doped with Pd catalyst. , 2011, ACS applied materials & interfaces.

[25]  Hideki Masuda,et al.  Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module. , 2011, Optics express.

[26]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[27]  Zheng-tang Liu,et al.  The preparation and properties of Y2O3/AlN anti-reflection films on chemical vapor deposition diamond , 2011 .

[28]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[29]  Shangjun Ding,et al.  Sol–gel preparation and characterization of nanoporous ZnO/SiO2 coatings with broadband antireflection properties , 2011 .

[30]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[31]  Ultralow broadband optical reflection of silicon nanostructured surfaces coupled with antireflection coating , 2012, Journal of Materials Science.

[32]  Lei Zhang,et al.  Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells , 2012 .

[33]  R. Bunch,et al.  One-step index-tunable antireflection coatings from aggregated silica nanoparticles. , 2012, ACS applied materials & interfaces.

[34]  Namsoo Kim,et al.  Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. , 2013, ACS applied materials & interfaces.

[35]  H. Hsiang,et al.  Controlling morphology and crystallite size of Cu(In0.7Ga0.3)Se2 nano-crystals synthesized using a heating-up method , 2013 .

[36]  E. Fred Schubert,et al.  Enhanced Omnidirectional Photovoltaic Performance of Solar Cells Using Multiple‐Discrete‐Layer Tailored‐ and Low‐Refractive Index Anti‐Reflection Coatings , 2013 .

[37]  Jian Pei,et al.  Integration of antireflection and light diffraction in nature: a strategy for light trapping , 2013 .

[38]  Ming-Jer Jeng,et al.  Electrodeposition of CuIn1−xGaxSe2 solar cells with a periodically-textured surface for efficient light collection , 2013 .

[39]  Fuqiang Huang,et al.  Broadband antireflection TiO2–SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells , 2014 .

[40]  M. Green,et al.  Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol-gel route , 2014 .

[41]  Halil Yavuz,et al.  Production of core–shell type conducting FTO/TiO2 photoanode for dye sensitized solar cells , 2014 .

[42]  Zhanqiang Liu,et al.  Efficiency Enhancement of Cu(In,Ga)Se2 Solar Cells by Applying SiO2–PEG/PVP Antireflection Coatings , 2015 .