Bruggeman approach for isotropic chiral mixtures revisited
暂无分享,去创建一个
[1] H. Faxén. Der Zusammenhang zwischen den Maxwellschen Gleichungen für Dielektrika und den atomistischen Ansätzen von H. A. Lorentz u. a. , 1920 .
[2] S. Shtrikman,et al. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .
[3] Doyle,et al. Optical properties of a suspension of metal spheres. , 1989, Physical review. B, Condensed matter.
[4] A. Lakhtakia,et al. Bruggeman model for chiral particulate composites , 1992 .
[5] Akhlesh Lakhtakia,et al. Size-dependent Maxwell-Garnett formula from an integral equation formalism , 1992 .
[6] Akhlesh Lakhtakia,et al. On the extended Maxwell-Garnett and the extended Bruggeman approaches for dielectric-in-dielectric composites , 1994 .
[7] Akhlesh Lakhtakia,et al. Beltrami Fields in Chiral Media , 1994 .
[8] B. Shanker. The extended Bruggeman approach for chiral-in-chiral mixtures , 1996 .
[9] Akhlesh Lakhtakia,et al. Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium , 1997 .
[10] CORRECTION TO ''MAXWELL GARNETT AND BRUGGEMAN FORMALISMS FOR A PARTICULATE COMPOSITE WITH BIANISOTROPIC HOST MEDIUM'' , 1999 .
[11] Tom G. Mackay,et al. Homogenization of Linear and Nonlinear Complex Composite Materials , 2003 .
[12] T. Mackay. Depolarization volume and correlation length in the homogenization of anisotropic dielectric composites , 2004, physics/0408046.