A Guaranteed Bound of the Optimal Constant in the Error Estimates for Linear Triangular Elements
暂无分享,去创建一个
[1] Nobito Yamamoto,et al. Numerical verifications for eigenvalues of second-order elliptic operators , 1999 .
[2] M. Nakao. Solving Nonlinear Elliptic Problems with Result Verification Using an H -1 Type Residual Iteration , 1993 .
[3] R. Lehmann. Computable Error Bounds in the Finite-Element Method , 1986 .
[4] Mitsuhiro T. Nakao. NUMERICAL VERIFICATION METHODS FOR SOLUTIONS OF ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS , 2000 .
[5] 川口 光年,et al. O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .
[6] Mitsuhiro Nakao. A numerical approach to the proof of existence of solutions for elliptic problems II , 1988 .
[7] Nobito Yamamoto,et al. Numerical Verification of Solutions for Nonlinear Elliptic Problems Using anL∞Residual Method☆ , 1998 .
[8] Mitsuhiro T. Nakao,et al. A Guaranteed Bound of the Optimal Constant in the Error Estimates for Linear Triangular Elements , 2001, Perspectives on Enclosure Methods.
[9] Seiji Kimura,et al. On the Best Constant in the Error Bound for theH10-Projection into Piecewise Polynomial Spaces , 1998 .
[10] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[11] F. Natterer. Berechenbare Fehlerschranken für die Methode der Finiten Elemente , 1975 .
[12] R. B. Kearfott,et al. Applications of interval computations , 1996 .
[13] Peter Arbenz. Computable Finite Element Error Bounds for Poisson's Equation , 1982 .