Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes

[1]  T. Jaramillo,et al.  Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm , 2018, ACS Energy Letters.

[2]  Yanguang Li,et al.  High Electrocatalytic Response of Ultra-refractory Ternary Alloys of Ta-Hf-C Carbide toward Hydrogen Evolution Reaction in Acidic Media , 2018, The Journal of Physical Chemistry C.

[3]  T. Woo,et al.  Ethanol electrooxidation reaction in alkaline media for direct ethanol fuel cells , 2018 .

[4]  M. Bechelany,et al.  Boron Nitride as a Novel Support for Highly Stable Palladium Nanocatalysts by Atomic Layer Deposition , 2018, Nanomaterials.

[5]  I. Iatsunskyi,et al.  High-Performance Nanowire Hydrogen Sensors by Exploiting the Synergistic Effect of Pd Nanoparticles and Metal-Organic Framework Membranes. , 2018, ACS applied materials & interfaces.

[6]  Dario R. Dekel,et al.  Beyond 1.0 W cm −2 Performance without Platinum: The Beginning of a New Era in Anion Exchange Membrane Fuel Cells , 2018 .

[7]  V. Hacker,et al.  Fuel cells and hydrogen : from fundamentals to applied research , 2018 .

[8]  D. Sokaras,et al.  Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. , 2018, Journal of the American Chemical Society.

[9]  J. Limtrakul,et al.  The Activation of Methane on Ru, Rh, and Pd Decorated Carbon Nanotube and Boron Nitride Nanotube: A DFT Study , 2018 .

[10]  M. Bechelany,et al.  Enhanced Catalytic Glycerol Oxidation Activity Enabled by Activated‐Carbon‐Supported Palladium Catalysts Prepared through Atomic Layer Deposition , 2018 .

[11]  S. Tingry,et al.  Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  R. Basu,et al.  Highly Active Multimetallic Palladium Nanoalloys Embedded in Conducting Polymer as Anode Catalyst for Electrooxidation of Ethanol. , 2017, ACS applied materials & interfaces.

[13]  Hongtao Yu,et al.  Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen-Co-doped Nanodiamond. , 2017, Angewandte Chemie.

[14]  M. Barr,et al.  Enhancement of Pd Catalytic Activity toward Ethanol Electrooxidation by Atomic Layer Deposition of SnO2 onto TiO2 Nanotubes , 2017 .

[15]  M. Bechelany,et al.  Surfactant- and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis. , 2017, ACS applied materials & interfaces.

[16]  Sebastien Balme,et al.  Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition. , 2017, ACS applied materials & interfaces.

[17]  Ryan Pavlicek,et al.  Highly active nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium , 2017 .

[18]  Kun Jiang,et al.  Electrocatalysis of Ethylene Glycol Oxidation on Bare and Bi-Modified Pd Concave Nanocubes in Alkaline Solution: An Interfacial Infrared Spectroscopic Investigation , 2017 .

[19]  S. Baranton,et al.  Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen , 2017, Science Advances.

[20]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[21]  Wenzheng Li,et al.  PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol=methanol, ethanol, ethylene glycol and glycerol) , 2016 .

[22]  Brian P. Setzler,et al.  Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. , 2016, Nature nanotechnology.

[23]  Yuyan Shao,et al.  Electrocatalysts by atomic layer deposition for fuel cell applications , 2016 .

[24]  R. Luque,et al.  Designed multimetallic Pd nanosponges with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation , 2016 .

[25]  S. Baranton,et al.  Electrochemical conversion of alcohols for hydrogen production: a short overview , 2016 .

[26]  S. Dou,et al.  In-plane graphene/boron-nitride heterostructures as an efficient metal-free electrocatalyst for the oxygen reduction reaction. , 2016, Nanoscale.

[27]  L. A. Soares,et al.  Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation , 2016 .

[28]  Dario R. Dekel,et al.  A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells. , 2016, Angewandte Chemie.

[29]  P. Strasser,et al.  Nanostructured electrocatalysts with tunable activity and selectivity , 2016 .

[30]  K.,et al.  High impact of the reducing agent on palladium nanomaterials: new insights from X-ray photoelectron spectroscopy and oxygen reduction reaction , 2016 .

[31]  U. Waghmare,et al.  Superior performance of borocarbonitrides, BxCyNz, as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction , 2016 .

[32]  M. Barr,et al.  Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties. , 2015, ACS applied materials & interfaces.

[33]  Jin Wang,et al.  Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation , 2015 .

[34]  Y. Shao-horn,et al.  Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics , 2015 .

[35]  X. Tao,et al.  Correlation of Surface Ag Content in AgPd Shells of Ultrasmall Core–Shell Au@AgPd Nanoparticles with Enhanced Electrocatalytic Performance for Ethanol Oxidation , 2015 .

[36]  Markus Antonietti,et al.  Carbon-doped BN nanosheets for metal-free photoredox catalysis , 2015, Nature Communications.

[37]  Susobhan Choudhury,et al.  Facile synthesis of Pd nanostructures in hexagonal mesophases as a promising electrocatalyst for ethanol oxidation , 2015 .

[38]  Srabanti Ghosh,et al.  Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation , 2015 .

[39]  M. Verheijen,et al.  Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition , 2015, Nanotechnology.

[40]  W. J. Pech-Rodríguez,et al.  Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part II: Effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt–Ru/C anodes , 2014 .

[41]  Hyeong-Jin Kim,et al.  PtAg nanotubes for electrooxidation of ethylene glycol and glycerol in alkaline media , 2014 .

[42]  Alexey Serov,et al.  Self-supported Pd(x)Bi catalysts for the electrooxidation of glycerol in alkaline media. , 2014, Journal of the American Chemical Society.

[43]  A. Bandarenka,et al.  Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts , 2013 .

[44]  T. Napporn,et al.  Toward the Electrochemical Valorization of Glycerol: Fourier Transform Infrared Spectroscopic and Chromatographic Studies , 2013 .

[45]  P. Atanassov,et al.  Novel Pd–In catalysts for alcohols electrooxidation in alkaline media , 2013 .

[46]  Ping Wang,et al.  Highly active PdAu alloy catalysts for ethanol electro-oxidation , 2013 .

[47]  A. Hirata,et al.  Geometrically Controlled Nanoporous PdAu Bimetallic Catalysts with Tunable Pd/Au Ratio for Direct Ethanol Fuel Cells , 2013 .

[48]  P. Fornasiero,et al.  Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. , 2013, ChemSusChem.

[49]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[50]  Panagiotis Tsiakaras,et al.  PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review , 2013, Journal of Applied Electrochemistry.

[51]  Andreas Winter,et al.  Three‐Dimensional Nitrogen and Boron Co‐doped Graphene for High‐Performance All‐Solid‐State Supercapacitors , 2012, Advanced materials.

[52]  V. Zaikovskii,et al.  Highly Oxidized Palladium Nanoparticles Comprising Pd4+ Species: Spectroscopic and Structural Aspects, Thermal Stability, and Reactivity , 2012 .

[53]  S. Jiang,et al.  Electrooxidation of Methanol and Ethylene Glycol Mixture on Platinum and Palladium in Alkaline Medium , 2012 .

[54]  Mark K. Debe,et al.  Electrocatalyst approaches and challenges for automotive fuel cells , 2012, Nature.

[55]  Chengzhou Zhu,et al.  PdM (M = Pt, Au) Bimetallic Alloy Nanowires with Enhanced Electrocatalytic Activity for Electro‐oxidation of Small Molecules , 2012, Advanced materials.

[56]  Hongwei Zhang,et al.  Recent development of polymer electrolyte membranes for fuel cells. , 2012, Chemical reviews.

[57]  C. M. Li,et al.  Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd–Ag towards methanol oxidation in alkaline media , 2010 .

[58]  T. Meade,et al.  Electrochemistry of redox-active self-assembled monolayers. , 2010, Coordination chemistry reviews.

[59]  Stève Baranton,et al.  Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration , 2010 .

[60]  A. Titkov,et al.  X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen , 2009 .

[61]  B. Keita,et al.  Bimetallic Palladium−Gold Nanostructures: Application in Ethanol Oxidation , 2009 .

[62]  B. Keita,et al.  Palladium Nanowires Synthesized in Hexagonal Mesophases : Application in Ethanol Electrooxidation , 2009 .

[63]  J. Filippi,et al.  Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. , 2009, ChemSusChem.

[64]  M. Łukaszewski,et al.  Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption , 2008 .

[65]  F. Zaera The surface chemistry of thin film atomic layer deposition (ALD) processes for electronic device manufacturing , 2008 .

[66]  K. Schwarz,et al.  Bonding of hexagonal BN to transition metal surfaces: An ab initio density-functional theory study , 2008 .

[67]  C. Comninellis,et al.  Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes , 2005 .

[68]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[69]  K. Larsson,et al.  Initial growth of hexagonal and cubic boron nitride: A theoretical study , 2003 .

[70]  A. Bond Broadening Electrochemical Horizons: Principles and Illustration of Voltammetric and Related Techniques , 2003 .

[71]  T. Wen,et al.  Voltammetric investigation of palladium oxides—I: Their formation/reduction in NaOH , 1995 .

[72]  Jürgen Heinze,et al.  Cyclic Voltammetry—“Electrochemical Spectroscopy”. New Analytical Methods (25) , 1984 .

[73]  N. Winograd,et al.  X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode , 1974 .

[74]  Richard S. Nicholson,et al.  Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. , 1965 .

[75]  N. Tanaka,et al.  Kinetic parameters of electrode reactions , 1964 .

[76]  T. Napporn,et al.  Effect of Co‐catalyst on the Selective Electrooxidation of Glycerol over Ruthenium‐based Nanomaterials , 2017 .

[77]  L. Marks,et al.  Atomic layer deposition of Pd and Pt nanoparticles for catalysis : on the mechanisms of nanoparticle formation , 2017 .

[78]  Dusan Strmcnik,et al.  Energy and fuels from electrochemical interfaces. , 2016, Nature materials.

[79]  Zhiyu Wang,et al.  Sustainable Synthesis and Assembly of Biomass‐Derived B/N Co‐Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for High‐Performance Supercapacitors , 2016 .

[80]  C. Lamy,et al.  Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode , 2014 .

[81]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[82]  A. R. Andrade,et al.  Ethanol Electrooxidation by Plurimetallic Pt-Based Electrocatalysts Prepared by Microwave Assisted Heating , 2014 .

[83]  Ingenieria Ceramica Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part I: Effects of the polyol synthesis conditions on the characteristics and catalytic activity of PteSn/C anodes , 2014 .

[84]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[85]  Su-Moon Park,et al.  Electrochemical impedance spectroscopy. , 2010, Annual review of analytical chemistry.

[86]  I. Manners,et al.  B-N compounds for chemical hydrogen storage. , 2009, Chemical Society reviews.

[87]  J. Carlsson,et al.  Atomic layer deposition of BN thin films , 2002 .

[88]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .