Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

Abstract A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations.

[1]  Jun Sun,et al.  Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method , 2010 .

[2]  Haipeng Peng,et al.  Parameter estimation of dynamical systems via a chaotic ant swarm. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Bo Peng,et al.  Differential evolution algorithm-based parameter estimation for chaotic systems , 2009 .

[4]  Juan A. Lazzús,et al.  Optimization of activity coefficient models to describe vapor-liquid equilibrium of (alcohol + water) mixtures using a particle swarm algorithm , 2010, Comput. Math. Appl..

[5]  Juan A. Lazzús Hybrid Particle Swarm-Ant Colony Algorithm to Describe the Phase Equilibrium of Systems Containing Supercritical Fluids with Ionic Liquids , 2013 .

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  Michal Pluhacek,et al.  On the behavior and performance of chaos driven PSO algorithm with inertia weight , 2013, Comput. Math. Appl..

[8]  Hirosato Nomura,et al.  Parameters identification of chaotic systems by quantum-behaved particle swarm optimization , 2009, Int. J. Comput. Math..

[9]  Juan A. Lazzús,et al.  Hybrid swarm optimization for vapor–liquid equilibrium modeling , 2014 .

[10]  陆君安,et al.  Persistent excitation in adaptive parameter identification of uncertain chaotic system , 2011 .

[11]  Han Xiao,et al.  Parameters identification of chaotic system by chaotic gravitational search algorithm , 2012, Chaos, Solitons & Fractals.

[12]  Ling Wang,et al.  Parameter estimation for chaotic systems by particle swarm optimization , 2007 .

[13]  Hengqing Tong,et al.  Parameter estimation for chaotic system with initial random noises by particle swarm optimization , 2009 .

[14]  Tim Palmer,et al.  A Nonlinear Dynamical Perspective on Climate Prediction , 1999 .

[15]  Lilian Huang,et al.  Parameters identification and adaptive synchronization of chaotic systems with unknown parameters , 2005 .

[16]  Jun-Juh Yan,et al.  Parameter identification of chaotic systems using evolutionary programming approach , 2008, Expert Syst. Appl..

[17]  T. Palmer Extended-range atmospheric prediction and the Lorenz model , 1993 .

[18]  Yin Ming-hao,et al.  Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method , 2012 .

[19]  Lixiang Li,et al.  An Optimization Method Inspired by "chaotic" Ant Behavior , 2006, Int. J. Bifurc. Chaos.

[20]  Amit Banerjee,et al.  A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems , 2014 .

[21]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[22]  Ling Wang,et al.  An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems , 2010, Expert Syst. Appl..

[23]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[24]  Xiang-Jun Wu,et al.  Chaos in the fractional-order Lorenz system , 2009, Int. J. Comput. Math..

[25]  Patrick Siarry,et al.  Particle swarm and ant colony algorithms hybridized for improved continuous optimization , 2007, Appl. Math. Comput..

[26]  Juan A. Lazzús Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network , 2011 .

[27]  M. Lakshmanan,et al.  Estimation of system parameters and predicting the flow function from time series of continuous dynamical systems , 2004, nlin/0406027.

[28]  T. Palmer Predicting uncertainty in forecasts of weather and climate , 2000 .

[29]  Hamidreza Modares,et al.  Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..

[30]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[31]  Magdalene Marinaki,et al.  Ant colony and particle swarm optimization for financial classification problems , 2009, Expert Syst. Appl..

[32]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[33]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[34]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[35]  Theodore J. Gordon Chaos in social systems , 1992 .