An algorithm for exact super-resolution and phase retrieval

We explore a fundamental problem of super-resolving a signal of interest from a few measurements of its low-pass magnitudes. We propose a 2-stage tractable algorithm that, in the absence of noise, admits perfect super-resolution of an r-sparse signal from 2r2 -2r + 2 low-pass magnitude measurements. The spike locations of the signal can assume any value over a continuous disk, without increasing the required sample size. The proposed algorithm first employs a conventional super-resolution algorithm (e.g. the matrix pencil approach) to recover unlabeled sets of signal correlation coefficients, and then applies a simple sorting algorithm to disentangle and retrieve the true parameters in a deterministic manner. Our approach can be adapted to multi-dimensional spike models and random Fourier sampling by replacing its first step with other harmonic retrieval algorithms.

[1]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[2]  Yonina C. Eldar,et al.  Super-resolution and reconstruction of sparse sub-wavelength images. , 2009, Optics express.

[3]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[4]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[5]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[6]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[7]  Dustin G. Mixon,et al.  Phase retrieval from power spectra of masked signals , 2013, ArXiv.

[8]  Adel Javanmard,et al.  Localization from Incomplete Noisy Distance Measurements , 2011, Foundations of Computational Mathematics.

[9]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[10]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[11]  Emmanuel J. Cand Towards a Mathematical Theory of Super-Resolution , 2012 .

[12]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[13]  Haim Azhari,et al.  Super-resolution in PET imaging , 2006, IEEE Transactions on Medical Imaging.

[14]  D. Kane,et al.  Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating , 1993 .

[15]  Andrea J. Goldsmith,et al.  Exact and Stable Covariance Estimation From Quadratic Sampling via Convex Programming , 2013, IEEE Transactions on Information Theory.

[16]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[17]  Yonina C. Eldar,et al.  Sparsity Based Sub-wavelength Imaging with Partially Incoherent Light via Quadratic Compressed Sensing References and Links , 2022 .

[18]  Felix Krahmer,et al.  A Partial Derandomization of PhaseLift Using Spherical Designs , 2013, Journal of Fourier Analysis and Applications.

[19]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[20]  Dustin G. Mixon,et al.  Phase Retrieval with Polarization , 2012, SIAM J. Imaging Sci..

[21]  Michael D. Zoltowski,et al.  OFDM blind carrier offset estimation: ESPRIT , 2000, IEEE Trans. Commun..

[22]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[23]  Sampath Kannan,et al.  Reconstructing Numbers from Pairwise Function Values , 2009, ISAAC.

[24]  Yonina C. Eldar,et al.  On conditions for uniqueness in sparse phase retrieval , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  Babak Hassibi,et al.  Recovery of sparse 1-D signals from the magnitudes of their Fourier transform , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[26]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[27]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[28]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2010, IEEE Transactions on Signal Processing.

[29]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[30]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[31]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[32]  Babak Hassibi,et al.  Sparse phase retrieval: Convex algorithms and limitations , 2013, 2013 IEEE International Symposium on Information Theory.

[33]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[34]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[35]  L. Demanet,et al.  Stable Optimizationless Recovery from Phaseless Linear Measurements , 2012, Journal of Fourier Analysis and Applications.

[36]  Martin Vetterli,et al.  Phase Retrieval for Sparse Signals: Uniqueness Conditions , 2013, ArXiv.

[37]  Xiaodong Li,et al.  Solving Quadratic Equations via PhaseLift When There Are About as Many Equations as Unknowns , 2012, Found. Comput. Math..