The Quantum Hydrodynamic Model for Semiconductor Devices

The classical hydrodynamic equations can be extended to include quantum effects by incorporating the first quantum corrections. These quantum corrections are $O( {\hbar ^2 } )$. The full three-dimensional quantum hydrodynamic (QHD) model is derived for the first time by a moment expansion of the Wigner–Boltzmann equation. The QHD conservation laws have the same form as the classical hydrodynamic equations, but the energy density and stress tensor have additional quantum terms. These quantum terms allow particles to tunnel through potential barriers and to build up in potential wells.The three-dimensional QHD transport equations are mathematically classified as having two Schrodinger modes, two hyperbolic modes, and one parabolic mode. The one-dimensional steady-state QHD equations are discretized in conservation form using the second upwind method.Simulations of a resonant tunneling diode are presented that show charge buildup in the quantum well and negative differential resistance (NDR) in the current-v...

[1]  F. Odeh,et al.  The Wigner function for thermal equilibrium , 1991 .

[2]  Ferry,et al.  Self-consistent study of the resonant-tunneling diode. , 1989, Physical review. B, Condensed matter.

[3]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[4]  Carl L. Gardner,et al.  Numerical simulation of a steady-state electron shock wave in a submicrometer semiconductor device , 1991 .

[5]  A. Yoshii,et al.  Hot-electron velocity characteristics at AlGaAs/GaAs heterostructures , 1984, IEEE Electron Device Letters.

[6]  D. Bohm,et al.  The Aharonov-Bohm effect and the quantum potential , 1982 .

[7]  D. Rose,et al.  Global approximate Newton methods , 1981 .

[8]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[9]  C. Gardner Hydrodynamic and Monte Carlo simulation of an electron shock wave in a 1- mu m n/sup +/-n-n/sup +/ diode , 1993 .

[10]  M. Stroscio Moment-equation representation of the dissipative quantum Liouville equation , 1986 .

[11]  H. Juretschke,et al.  Introduction to Solid-State Theory , 1978 .

[12]  R. Kolbas,et al.  Resonant tunneling transport at 300 K in GaAs‐AlGaAs quantum wells grown by metalorganic chemical vapor deposition , 1986 .

[13]  A. Kriman,et al.  Transient Simulation of Ultra-Small GaAs MESFET Using Quantum Moment Equations , 1992, Picosecond Electronics and Optoelectronics.

[14]  R. Trew,et al.  A New Nonparabolic Hydrodynamic Model with Quantum Corrections , 1991 .

[15]  M. Ancona,et al.  Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.

[16]  Resonant Tunneling in the Quantum Hydrodynamic Model , 1995 .

[17]  David K. Ferry,et al.  UTILIZATION OF QUANTUM DISTRIBUTION FUNCTIONS FOR ULTRA-SUBMICRON DEVICE TRANSPORT , 1981 .

[18]  Naoki Yokoyama,et al.  Self‐consistent analysis of resonant tunneling current , 1986 .

[19]  Bernardo Cockburn,et al.  Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode at 300 K , 1995, Journal of Computational Electronics.

[20]  J. Barker,et al.  The quantum mechanical tunnelling time problem-revisited , 1987 .

[21]  G. Baccarani,et al.  An investigation of steady-state velocity overshoot in silicon , 1985 .

[22]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[23]  Turley,et al.  Electronic wave functions and electron-confined-phonon matrix elements in GaAs/AlxGa1-xAs double-barrier resonant-tunneling structures. , 1991, Physical review. B, Condensed matter.

[24]  A. Jauho,et al.  Time-dependent tunneling of wave-packets through heterostructures in an applied field , 1986 .

[25]  W. Frensley Simulation of resonant‐tunneling heterostructure devices , 1985 .

[26]  Massimo Rudan,et al.  MULTI‐DIMENSIONAL DISCRETIZATION SCHEME FOR THE HYDRODYNAMIC MODEL OF SEMICONDUCTOR DEVICES , 1986 .

[27]  H. L. Grubin,et al.  Quantum moment balance equations and resonant tunnelling structures , 1989 .

[28]  ON THE WELL‐POSEDNESS OF THE TWO‐DIMENSIONAL HYDRODYNAMIC MODEL FOR SEMICONDUCTOR DEVICES , 1990 .

[29]  M. Fischetti Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport , 1991 .

[30]  Donald J. Rose,et al.  Numerical methods for the hydrodynamic device model: subsonic flow , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[31]  R. Trew,et al.  Construction of higher‐moment terms in the hydrodynamic electron‐transport model , 1993 .

[32]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .