Skyrmions in nanorings: A versatile platform for skyrmionics

The dynamical properties of skyrmions can be exploited to build devices with new functionalities. Here, we first investigate a skyrmion-based ring-shaped device by means of micromagnetic simulations and Thiele equation. We subsequently show three applications scenarios: (1) a clock with tunable frequency that is biased with an electrical current having a radial spatial distribution, (2) an alternator, where the skyrmion circular motion driven by an engineered anisotropy gradient is converted into an electrical signal, and (3) an energy harvester, where the skyrmion motion driven by a thermal gradient is converted into an electrical signal, thus providing a heat recovery operation. We also show how to precisely tune the frequency and amplitude of the output electrical signals by varying material parameters, geometrical parameters, number and velocity of skyrmions, and we further prove the correct device functionality under realistic conditions given by room temperature and internal material defects. Our results open a new route for the realization of energy efficient nanoscale clocks, generators, and energy harvesters.

[1]  Yan Zhou,et al.  Manipulation of Skyrmion by Magnetic Field Gradients: A Stern-Gerlach-Like Experiment. , 2023, Nano letters.

[2]  Junwei Zhang,et al.  Electrical detection of magnetic skyrmions in a magnetic tunnel junction , 2022, 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers).

[3]  L. Buda-Prejbeanu,et al.  Programmable Skyrmion Logic Gates Based on Skyrmion Tunneling , 2022, Physical Review Applied.

[4]  G. Finocchio,et al.  Temperature-Gradient-Driven Magnetic Skyrmion Motion , 2022, Physical Review Applied.

[5]  H. Hug,et al.  Tuning the Coexistence Regime of Incomplete and Tubular Skyrmions in Ferromagnetic/Ferrimagnetic/Ferromagnetic Trilayers. , 2022, ACS applied materials & interfaces.

[6]  A. Haldar,et al.  Skyrmion Dynamics in Concentric and Eccentric Nano-Ring Structures , 2022, IEEE Transactions on Magnetics.

[7]  A. Fert,et al.  Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. , 2022, Science bulletin.

[8]  R. Belkhou,et al.  Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination , 2021, Nature Communications.

[9]  R. Madhumathi,et al.  Confinement of stable skyrmionium and skyrmion state in ultrathin nanoring , 2021 .

[10]  B. Ge,et al.  Electrical manipulation of skyrmions in a chiral magnet , 2021, Nature communications.

[11]  D. Muller,et al.  Imaging the spin chirality of ferrimagnetic Néel skyrmions stabilized on topological antiferromagnetic Mn3Sn , 2021, Physical Review Materials.

[12]  J. Escrig,et al.  Field-Dependent Energy Barriers of Magnetic Néel Skyrmions in Ultrathin Circular Nanodots , 2021, Physical Review Applied.

[13]  D. Mailly,et al.  Helium Ions Put Magnetic Skyrmions on the Track. , 2021, Nano letters.

[14]  J. Phillips Energy Harvesting in Nanosystems: Powering the Next Generation of the Internet of Things , 2021, Frontiers in Nanotechnology.

[15]  S. de Caro,et al.  Role of magnetic skyrmions for the solution of the shortest path problem , 2021, 2103.02949.

[16]  Benjamin W. Walker,et al.  Skyrmion Logic Clocked via Voltage Controlled Magnetic Anisotropy , 2021, Applied Physics Letters.

[17]  G. Finocchio,et al.  Magnetization reversal signatures of hybrid and pure Néel skyrmions in thin film multilayers , 2020, 2103.14527.

[18]  H. Hug,et al.  Coexistence of distinct skyrmion phases observed in hybrid ferromagnetic/ferrimagnetic multilayers , 2020, Nature Communications.

[19]  W. Chao,et al.  Thermal generation, manipulation and thermoelectric detection of skyrmions , 2020, Nature Electronics.

[20]  Z. Zeng,et al.  Voltage-controlled skyrmion-based nanodevices for neuromorphic computing using a synthetic antiferromagnet , 2020, Nanoscale advances.

[21]  G. Finocchio,et al.  Controlling the deformation of antiferromagnetic skyrmions in the high-velocity regime , 2020, Physical Review B.

[22]  G. Schütz,et al.  The role of temperature and drive current in skyrmion dynamics , 2020 .

[23]  H. Ohno,et al.  Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles , 2019, Nature Communications.

[24]  Xing Chen,et al.  Thermal Brownian Motion of Skyrmion for True Random Number Generation , 2019, IEEE Transactions on Electron Devices.

[25]  Daoqian Zhu,et al.  Stochastic Computing Implemented by Skyrmionic Logic Devices , 2019, 1911.03917.

[26]  A. Fert,et al.  Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets , 2019, Nature Materials.

[27]  E. Linfield,et al.  Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers , 2019, Nature Communications.

[28]  H. Ju,et al.  Skyrmion-based artificial synapses for neuromorphic computing , 2019, Nature Electronics.

[29]  Weisheng Zhao,et al.  Skyrmion-Induced Memristive Magnetic Tunnel Junction for Ternary Neural Network , 2019, IEEE Journal of the Electron Devices Society.

[30]  G. Durin,et al.  Individual skyrmion manipulation by local magnetic field gradients , 2019, Communications Physics.

[31]  N. Xu,et al.  Voltage-Controlled Skyrmion Memristor for Energy-Efficient Synapse Applications , 2019, IEEE Electron Device Letters.

[32]  G. Schütz,et al.  Anatomy of Skyrmionic Textures in Magnetic Multilayers , 2019, Advanced materials.

[33]  Daniele Pinna,et al.  Reservoir Computing with Random Skyrmion Textures , 2018, Physical Review Applied.

[34]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[35]  Z. Zeng,et al.  Micromagnetic understanding of the skyrmion Hall angle current dependence in perpendicularly magnetized ferromagnets , 2018, Physical Review B.

[36]  F. García-Sánchez,et al.  Skyrmion Logic System for Large-Scale Reversible Computation , 2018, Physical Review Applied.

[37]  H. Berger,et al.  Manipulation of skyrmion motion by magnetic field gradients , 2018, Nature Communications.

[38]  Gerhard Jakob,et al.  Thermal skyrmion diffusion used in a reshuffler device , 2018, Nature Nanotechnology.

[39]  Xing Chen,et al.  A compact skyrmionic leaky-integrate-fire spiking neuron device. , 2018, Nanoscale.

[40]  G. Beach,et al.  Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications , 2018, Scientific Reports.

[41]  G. Finocchio,et al.  Chiral skyrmions in an anisotropy gradient , 2018, Physical Review B.

[42]  A. Fert,et al.  Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature , 2018, Nature Nanotechnology.

[43]  Jeongmin Hong,et al.  Reconfigurable Skyrmion Logic Gates. , 2018, Nano letters.

[44]  A. Fert,et al.  Hybrid chiral domain walls and skyrmions in magnetic multilayers , 2017, Science Advances.

[45]  George Bourianoff,et al.  Potential implementation of reservoir computing models based on magnetic skyrmions , 2017, 1709.08911.

[46]  M. Raju,et al.  The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature , 2017, Nature Communications.

[47]  Yan Zhou,et al.  Manipulating and trapping skyrmions by magnetic field gradients , 2017 .

[48]  Yan Zhou,et al.  Magnetic skyrmion-based artificial neuron device , 2017, Nanotechnology.

[49]  G. Finocchio,et al.  Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots , 2017, 1706.07569.

[50]  E. Linfield,et al.  Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs , 2017, Nature Nanotechnology.

[51]  S. Blügel,et al.  Experimental observation of chiral magnetic bobbers in B20-type FeGe , 2017, Nature Nanotechnology.

[52]  Y. Tokura,et al.  Current‐Induced Nucleation and Annihilation of Magnetic Skyrmions at Room Temperature in a Chiral Magnet , 2017, Advanced materials.

[53]  S. Eisebitt,et al.  Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. , 2017, Nature nanotechnology.

[54]  Yan Zhou,et al.  Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films , 2017, Nature Communications.

[55]  J. Xia,et al.  An Improved Racetrack Structure for Transporting a Skyrmion , 2017, Scientific Reports.

[56]  A. Fert,et al.  Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions. , 2017, Nano letters.

[57]  Benjamin Krueger,et al.  Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing , 2017, 1702.04298.

[58]  Pietro Burrascano,et al.  Electrical detection of single magnetic skyrmion at room temperature , 2017 .

[59]  Joo-Von Kim,et al.  Current-driven skyrmion dynamics in disordered films , 2017, 1701.08357.

[60]  Jacques Droulez,et al.  Skyrmion Gas Manipulation for Probabilistic Computing , 2017, Physical Review Applied.

[61]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[62]  Kang L. Wang,et al.  Room-Temperature Skyrmion Shift Device for Memory Application. , 2017, Nano letters.

[63]  G. Finocchio,et al.  Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion , 2016, 1610.00894.

[64]  G. Finocchio,et al.  Magnetic skyrmions: from fundamental to applications , 2016 .

[65]  Yan Zhou,et al.  Magnetic skyrmion-based synaptic devices , 2016, Nanotechnology.

[66]  F. Buttner,et al.  Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy , 2016, Nature Physics.

[67]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[68]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[69]  J. Sinova,et al.  Phenomenology of current-induced skyrmion motion in antiferromagnets , 2016, 1604.05712.

[70]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[71]  Kang L. Wang,et al.  Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. , 2016, Nano letters.

[72]  V. Cros,et al.  A skyrmion-based spin-torque nano-oscillator , 2016, 1602.00118.

[73]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[74]  G. Finocchio,et al.  Skyrmion based microwave detectors and harvesting , 2015, 1510.03841.

[75]  J. Åkerman,et al.  Dynamically stabilized magnetic skyrmions , 2015, Nature Communications.

[76]  J. Barker,et al.  Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature. , 2015, Physical review letters.

[77]  Yan Zhou,et al.  Magnetic bilayer-skyrmions without skyrmion Hall effect , 2015, Nature Communications.

[78]  Yan Zhou,et al.  Antiferromagnetic Skyrmion: Stability, Creation and Manipulation , 2015, Scientific Reports.

[79]  G. Finocchio,et al.  Topological, non-topological and instanton droplets driven by spin-transfer torque in materials with perpendicular magnetic anisotropy and Dzyaloshinskii–Moriya Interaction , 2015, Scientific Reports.

[80]  T. Devolder,et al.  Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlO x ultrathin films measured by Brillouin light spectroscopy , 2015, 1503.00372.

[81]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[82]  A. Fert,et al.  Skyrmions at room temperature : From magnetic thin films to magnetic multilayers , 2015, 1502.07853.

[83]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[84]  Qingfang Liu,et al.  Current-induced magnetic skyrmions oscillator , 2015 .

[85]  N. Nagaosa,et al.  Inertia, diffusion, and dynamics of a driven skyrmion , 2014, 1501.00444.

[86]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[87]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[88]  Hans Fangohr,et al.  Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory , 2014, Scientific Reports.

[89]  G. Finocchio,et al.  Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect , 2014, 1403.1485.

[90]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[91]  Bruno Azzerboni,et al.  Semi-implicit integration scheme for Landau–Lifshitz–Gilbert-Slonczewski equation , 2012 .

[92]  I. Krivorotov,et al.  Micromagnetic understanding of stochastic resonance driven by spin-transfer-torque , 2011, 1103.2536.

[93]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[94]  A. Thiele Steady-State Motion of Magnetic Domains , 1973 .

[95]  J. Dales,et al.  Contributors , 1966, The China Quarterly.

[96]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .