Progress toward fully noninductive discharge operation in DIII-D using off-axis neutral beam injection

The initial experiments on off-axis neutral beam injection into high noninductive current fraction (fNI), high normalized pressure (βN) discharges in DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] have demonstrated changes in the plasma profiles that increase the limits to plasma pressure from ideal low-n instabilities. The current profile is broadened and the minimum value of the safety factor (qmin) can be maintained above 2 where the profile of the thermal component of the plasma pressure is found to be broader. The off-axis neutral beam injection results in a broadening of the fast-ion pressure profile. Confinement of the thermal component of the plasma is consistent with the IPB98(y,2) scaling, but global confinement with qmin>2 is below the ITER-89P scaling, apparently as a result of enhanced transport of fast ions. A 0-D model is used to examine the parameter space for fNI=1 operation and project the requirements for high performance steady-state discharges. Fully noninductive solutions ...

[1]  T. Luce,et al.  Sensitivity of Transport and Stability to the Current Profile in Steady-state Scenario Plasmas in DIII-D , 2012 .

[2]  J. Park,et al.  Initial measurements of the DIII-D off-axis neutral beams , 2012 .

[3]  J. Manickam,et al.  Ideal MHD stability and performance of ITER steady-state scenarios with ITBs , 2012 .

[4]  T. Petrie,et al.  Balancing current drive and heating in DIII-D high noninductive current fraction discharges through choice of the toroidal field , 2011 .

[5]  T. Luce,et al.  Experimental investigation and validation of neutral beam current drive for ITER through ITPA Joint Experiments , 2011 .

[6]  T. L. Rhodes,et al.  Optimization of the safety factor profile for high noninductive current fraction discharges in DIII-D , 2011 .

[7]  L. L. Lao,et al.  Physics Basis of a Fusion Development Facility Utilizing the Tokamak Approach , 2010 .

[8]  T. C. Luce,et al.  Realizing Steady State Tokamak Operation for Fusion Energy , 2009 .

[9]  T. Fujita,et al.  Development of advanced operation scenarios in weak magnetic-shear regime on JT-60U , 2009 .

[10]  S. Pinches,et al.  Study of the fast ion confinement and current profile control on MAST , 2009 .

[11]  H. E. St. John,et al.  Off-axis neutral beam current drive for advanced scenario development in DIII-D , 2009 .

[12]  A. D. Turnbull,et al.  Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D , 2009 .

[13]  E. Joffrin,et al.  Chapter 6: Steady state operation , 2007 .

[14]  J. Manickam,et al.  Chapter 3: MHD stability, operational limits and disruptions , 2007 .

[15]  J. Kinsey,et al.  A theory-based transport model with comprehensive physicsa) , 2006 .

[16]  J. Kinsey,et al.  Access to sustained high-beta with internal transport barrier and negative central magnetic shear in DIII-D , 2006, Physics of Plasmas.

[17]  L. L. Lao,et al.  Progress toward fully noninductive, high beta conditions in DIII-D , 2005 .

[18]  J. Luxon A Brief Introduction to the DIII-D Tokamak , 2005 .

[19]  R. Nazikian,et al.  Alfvén eigenmode observations on DIII-D via two-colour CO2 interferometry , 2005 .

[20]  C. M. Greenfield,et al.  Optimization of DIII-D advanced tokamak discharges with respect to the β limita) , 2005 .

[21]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[22]  T. C. Luce,et al.  Electron cyclotron current drive efficiency in general tokamak geometry , 2003 .

[23]  O. Sauter,et al.  Erratum: “Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime” [Phys. Plasmas 6, 2834 (1999)] , 2002 .

[24]  G. Giruzzi,et al.  GENERATION OF LOCALIZED NONINDUCTIVE CURRENT BY ELECTRON CYCLOTRON WAVES ON THE DIII-D TOKAMAK , 1999 .

[25]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[26]  Robert L. Miller,et al.  Synergism between cross-section and profile shaping in beta optimization of tokamak equilibria with negative central shear , 1998 .

[27]  Turnbull,et al.  High Beta and Enhanced Confinement in a Second Stable Core VH-Mode Advanced Tokamak. , 1995, Physical review letters.

[28]  L. Lao,et al.  Sensitivity of the kink instability to the pressure profile , 1992 .

[29]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[30]  Clifford E Singer,et al.  OPTIMIZATION OF STEADY-STATE BEAM-DRIVEN TOKAMAK REACTORS. , 1983 .

[31]  L. C. Bernard,et al.  GATO: An MHD stability code for axisymmetric plasmas with internal separatrices , 1981 .

[32]  T. H. Stix,et al.  Heating of toroidal plasmas by neutral injection , 1972 .

[33]  L. L. Lao,et al.  The ARIES-AT advanced tokamak, Advanced technology fusion power plant , 2006 .

[34]  L. L. Lodestro,et al.  On the Grad–Shafranov equation as an eigenvalue problem, with implications for q solvers , 1994 .