Interface Modification Uncovers the Potential Application of SnO2/TiO2 Double Electron Transport Layer in Efficient Cadmium‐Free Sb2Se3 Devices

An undesirable p–n heterojunction interface of Sb2Se3 absorber with Cd‐free electron transport layer (ETL) is one of the key problems hindering the efficiency improvement of Sb2Se3 solar cell. Herein, a promising SnO2/TiO2 ETL coupled with SbCl3 treatment is introduced to improve the performance of Sb2Se3 solar cell. The mechanism of SbCl3 treatment on the crystal orientation of Sb2Se3 thin film and the p–n heterojunction interface of Sb2Se3 solar cell is disclosed combined with different characterization methods. The carrier transport property for Sb2Se3 thin film is enhanced, and the conduction band offset (CBO) of TiO2/Sb2Se3 interface is reduced from 0.57 to 0.20 eV by forming Sb2O3 interlayer at TiO2/Sb2Se3 interface after SbCl3 treatment, by which the interface recombination and the open circuit voltage deficit of the device can be effectively decreased, and the interface bonding at TiO2/Sb2Se3 interface can be effectively improved. Ultimately, the Cd‐free Sb2Se3 solar cell with configuration of ITO/SnO2/TiO2/Sb2Se3/Au achieves an efficiency of 5.82%, which is the highest efficiency in vapor transport deposition (VTD)‐processed Cd‐free Sb2Se3 solar cell at present. This work is expected to fill in the blank of VTD‐processed Cd‐free Sb2Se3 solar cell and offers a valuable reference for future band alignment of Sb2Se3 solar cell.

[1]  J. Ao,et al.  Remarkable Sb2Se3 Solar Cell with a Carbon Electrode by Tailoring Film Growth during the VTD Process , 2021, ACS Applied Energy Materials.

[2]  Y. Mai,et al.  Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells , 2021, Advanced science.

[3]  Wooseok Yang,et al.  Emerging Binary Chalcogenide Light Absorbers: Material Specific Promises and Challenges , 2021, Chemistry of Materials.

[4]  T. Chen,et al.  Direct Hydrothermal Deposition of Antimony Triselenide Films for Efficient Planar Heterojunction Solar Cells. , 2021, ACS applied materials & interfaces.

[5]  Gwo-Ching Wang,et al.  Efficient and stable flexible Sb2Se3 thin film solar cells enabled by an epitaxial CdS buffer layer , 2021, Nano Energy.

[6]  M. Rincón,et al.  Functional ZnO/TiO 2 Bilayer as Electron Transport Material for Solution‐Processed Sb 2 S 3 Solar Cells , 2021 .

[7]  F. Mezzadri,et al.  Role of the substrates in the ribbon orientation of Sb2Se3 films grown by Low-Temperature Pulsed Electron Deposition , 2020 .

[8]  G. Meyer,et al.  Tunneling and Thermally Activated Electron Transfer in Dye-Sensitized SnO2|TiO2 Core|Shell Nanostructures , 2020 .

[9]  H. Akiyama,et al.  Importance of Interfacial Passivation in the High Efficiency of Sb2Se3 Thin-Film Solar Cells: Numerical Evidence , 2020 .

[10]  P. Fan,et al.  High Open‐Circuit Voltage in Full‐Inorganic Sb 2 S 3 Solar Cell via Modified Zn‐Doped TiO 2 Electron Transport Layer , 2020 .

[11]  Xintong Zhang,et al.  Dual-function of CdCl2 treated SnO2 in Sb2Se3 solar cells , 2020 .

[12]  Jiang Tang,et al.  In situ investigation of interfacial properties of Sb2Se3 heterojunctions , 2020 .

[13]  Jiang Tang,et al.  Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin, and Possible Solutions , 2020, ACS Energy Letters.

[14]  T. Minemoto,et al.  Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells , 2020, Solar Energy Materials and Solar Cells.

[15]  V. Dhanak,et al.  Isotype Heterojunction Solar Cells Using n-Type Sb2Se3 Thin Films , 2020, Chemistry of Materials.

[16]  Liping Guo,et al.  Interface Engineering via Sputtered Oxygenated CdS:O Window Layer for Highly Efficient Sb 2 Se 3 Thin‐Film Solar Cells with Efficiency Above 7% , 2019, Solar RRL.

[17]  Jiang Tang,et al.  Orientation Engineering in Low‐Dimensional Crystal‐Structural Materials via Seed Screening , 2019, Advanced materials.

[18]  G. Meyer,et al.  Electron Localization and Transport in SnO2/TiO2 Mesoporous Thin Films: Evidence for a SnO2/SnxTi1-xO2/TiO2 Structure. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[19]  X. Jia,et al.  Enhancement of Sb2Se3 thin-film solar cell photoelectric properties by addition of interlayer CeO2 , 2019, Solar Energy.

[20]  X. Jia,et al.  Enhancement in the efficiency of Sb2Se3 solar cells using a TiO2-modified SnO2 buffer layer , 2019, Vacuum.

[21]  Jiang Tang,et al.  Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells , 2019, Nano Energy.

[22]  Y. Mai,et al.  Bandgap tunable CdS:O as efficient electron buffer layer for high-performance Sb2Se3 thin film solar cells , 2019, Solar Energy Materials and Solar Cells.

[23]  Jiang Tang,et al.  Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb2Se3. , 2019, ACS applied materials & interfaces.

[24]  R. Schropp,et al.  9.2%-efficient core-shell structured antimony selenide nanorod array solar cells , 2019, Nature Communications.

[25]  B. Vermang,et al.  Growth of Sb2Se3 thin films by selenization of RF sputtered binary precursors , 2018, Solar Energy Materials and Solar Cells.

[26]  T. Chen,et al.  Promising Sb2 (S,Se)3 Solar Cells with High Open Voltage by Application of a TiO2 /CdS Double Buffer Layer , 2018, Solar RRL.

[27]  B. Vermang,et al.  On the identification of Sb_2Se_3 using Raman scattering , 2018 .

[28]  Liping Guo,et al.  Tunable Quasi-One-Dimensional Ribbon Enhanced Light Absorption in Sb2 Se3 Thin-film Solar Cells Grown by Close-Space Sublimation , 2018, Solar RRL.

[29]  Guangda Niu,et al.  Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency , 2018, Nature Communications.

[30]  Yong Cheng,et al.  Facile synthesis of one-dimensional hollow Sb2O3@TiO2 composites as anode materials for lithium ion batteries , 2018, Journal of Power Sources.

[31]  Jiang Tang,et al.  Improved efficiency by insertion of Zn1−xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell , 2018, Solar Energy.

[32]  Chunfeng Lan,et al.  Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells , 2018, Materials.

[33]  Jiang Tang,et al.  Postsurface Selenization for High Performance Sb2S3 Planar Thin Film Solar Cells , 2017 .

[34]  Jiang Tang,et al.  Highly Anisotropic Sb2Se3 Nanosheets: Gentle Exfoliation from the Bulk Precursors Possessing 1D Crystal Structure , 2017, Advanced materials.

[35]  Liang Gao,et al.  Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer , 2017, Nature Energy.

[36]  Jiang Tang,et al.  Antimony selenide thin-film solar cells , 2016 .

[37]  Jiang Tang,et al.  Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries , 2015, Nature Photonics.

[38]  L. Monconduit,et al.  The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries , 2015 .

[39]  E. Mosconi,et al.  First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine. , 2014, The journal of physical chemistry letters.

[40]  Jiang Tang,et al.  Solution‐Processed Antimony Selenide Heterojunction Solar Cells , 2014 .

[41]  S. Ramanathan,et al.  Variations of ionization potential and electron affinity as a function of surface orientation: The case of orthorhombic SnS , 2014 .

[42]  S. Hirano,et al.  Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries , 2014 .

[43]  Yunhui Huang,et al.  Conformal N-doped carbon on nanoporous TiO2 spheres as a high-performance anode material for lithium-ion batteries , 2013 .

[44]  A. Walsh,et al.  Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers , 2013, Advanced materials.

[45]  C. Marín,et al.  Electronic structure of antimony selenide (Sb2Se3) from GW calculations , 2011 .

[46]  I. Cepanec,et al.  Antimony(III) chloride-catalysed Biginelli reaction : a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism , 2007 .

[47]  Yue-hua Hu,et al.  Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method , 2007 .

[48]  Yu-ran Luo,et al.  Comprehensive handbook of chemical bond energies , 2007 .

[49]  Luca Ottaviano,et al.  XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation , 2005 .

[50]  Lide Zhang,et al.  Synthesis and characterization of hollow Sb2Se3 nanospheres. , 2004 .

[51]  W. Yao,et al.  Structure and photocatalytic performances of glass/SnO2/TiO2 interface composite film , 2004 .

[52]  R. Herberholz,et al.  Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions , 1996 .

[53]  Taizo Yoshida,et al.  Solubility of Antimony Oxyhalides in Water , 1970 .