A mathematical model of nanoparticulate mixed oxide pseudocapacitors; part I: model description and particle size effects

A mathematical model was developed to describe the performance of nanoparticulate mixed oxide pseudocapacitors based on RuO2–MO2 (M being another suitable transition metal) under galvanostatic charge/discharge regime. Both double layer and faradaic processes were taken into account. The effects of the active material’s particle size and composition were examined. Furthermore, the influence of discharge current on the extents of double layer and faradaic contributions was analyzed. The model analysis showed that the energy density declined upon increasing the volume fraction of larger particles.

[1]  Xiaogang Zhang,et al.  Electrochemical performance of Co–Al layered double hydroxide nanosheets mixed with multiwall carbon nanotubes , 2008 .

[2]  A. Tanaka,et al.  Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[3]  Hu-lin Li,et al.  Synthesis and characterization of Co(OH)2/TiO2 nanotube composites as supercapacitor materials , 2007 .

[4]  W. Sugimoto,et al.  Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. , 2005, The journal of physical chemistry. B.

[5]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[6]  N. Miura,et al.  Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors , 2004 .

[7]  Ralph E. White,et al.  Prediction of the Current Density at an Electrode at Which Multiple Electrode Reactions Occur under Potentiostatic Control , 1983 .

[8]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[9]  Anbao Yuan,et al.  Pseudocapacitive behaviors of nanostructured manganese dioxide/carbon nanotubes composite electrodes in mild aqueous electrolytes: effects of electrolytes and current collectors , 2008 .

[10]  Mao-wen Xu,et al.  Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor , 2006 .

[11]  Nae-Lih Wu,et al.  Composite Supercapacitor Containing Tin Oxide and Electroplated Ruthenium Oxide , 2003 .

[12]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[13]  Arumugam Manthiram,et al.  Amorphous Ruthenium‐Chromium Oxides for Electrochemical Capacitors , 1999 .

[14]  J. A. Ritter,et al.  Characterization of Sol‐Gel‐Derived Cobalt Oxide Xerogels as Electrochemical Capacitors , 1998 .

[15]  H. E. Darling,et al.  Conductivity of Sulfuric Acid Solutions. , 1964 .

[16]  Ralph E. White,et al.  A Mathematical Model of an Electrochemical Capacitor with Double‐Layer and Faradaic Processes , 1999 .

[17]  Jim P. Zheng,et al.  Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide , 1998 .

[18]  Branko N. Popov,et al.  A Mathematical Model of Oxide/Carbon Composite Electrode for Supercapacitors , 2003 .

[19]  F. Gobal,et al.  Theoretical analysis of the performance of a model supercapacitor consisting of metal oxide nano-particles , 2007 .

[20]  W. Yonggang,et al.  Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites , 2004 .

[21]  Aibing Yu,et al.  Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures , 1996 .

[22]  Jong‐In Hong,et al.  Conducting Polymer with Metal Oxide for Electrochemical Capacitor: Poly(3,4-ethylenedioxythiophene) RuO x Electrode , 2001 .

[23]  Chi-Chang Hu,et al.  Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition , 2003 .

[24]  X. G. Zhang,et al.  NiO-based composite electrode with RuO2 for electrochemical capacitors , 2004 .

[25]  Shu-juan Bao,et al.  Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors , 2007 .

[26]  Branko N. Popov,et al.  Modeling the Effects of Electrode Composition and Pore Structure on the Performance of Electrochemical Capacitors , 2002 .

[27]  P. Simon,et al.  Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage , 2006 .

[28]  W. O'grady,et al.  Irreversible Voltammetric Behavior of the (100) IrO2 Single‐Crystal Electrodes in Sulfuric Acid Medium , 1985 .

[29]  He Kuan-xin,et al.  Electrodeposition of Nickel and Cobalt Mixed Oxide/Carbon Nanotube Thin Films and Their Charge Storage Properties , 2006 .

[30]  Chi-Chang Hu,et al.  Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors , 2004 .

[31]  A. Selskis,et al.  On the charge storage mechanism at RuO2/0.5 M H2SO4 interface , 2008 .

[32]  B. V. Tilak,et al.  Materials for electrochemical capacitors: Theoretical and experimental constraints , 1996 .

[33]  R. Spotnitz,et al.  A Mathematical Model for Intercalation Electrode Behavior I. Effect of Particle‐Size Distribution on Discharge Capacity , 1998 .

[34]  A. Zolfaghari,et al.  Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method , 2007 .

[35]  Chi-Chang Hu,et al.  Capacitive and textural characteristics of manganese oxide prepared by anodic deposition: effects of manganese precursors and oxide thickness , 2004 .

[36]  Chi-Chang Hu,et al.  Capacitive Characteristics of Binary Manganese-Nickel Oxides Prepared by Anodic Deposition , 2003 .

[37]  Marc A. Anderson,et al.  Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors , 1996 .

[38]  Norio Miura,et al.  Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors , 2004 .

[39]  Manming Yan,et al.  High-performance supercapacitors of hydrous ruthenium oxide/mesoporous carbon composites , 2006 .