Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare)

[1]  S. Knapp,et al.  Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm , 1993, Theoretical and Applied Genetics.

[2]  J. Giovannoni,et al.  Application of Genetic Bit Analysis (GBATM) for allelic selection in plant breeding , 1997, Molecular Breeding.

[3]  P. Langridge,et al.  STS-PCR markers appropriate for wheat-barley introgression , 1996, Theoretical and Applied Genetics.

[4]  M. Sorrells,et al.  Evaluation of barley chromosome-3 yield QTLs in a backcross F2 population using STS-PCR , 1996, Theoretical and Applied Genetics.

[5]  T. Sasaki,et al.  Sequence-tagged sites (STSs) as standard landmarkers in the rice genome , 1994, Theoretical and Applied Genetics.

[6]  D. Kudrna,et al.  A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome , 1993, Theoretical and Applied Genetics.

[7]  P. Hayes,et al.  Sequence-tagged-site-facilitated PCR for barley genome mapping , 1992, Theoretical and Applied Genetics.

[8]  L. Helmuth Map of the Human Genome 3.0 , 2001, Science.

[9]  T. Gura Can SNPs Deliver on Susceptibility Genes? , 2001, Science.

[10]  P. Schulze-Lefert,et al.  Sequence haplotypes revealed by sequence-tagged site fine mapping of the Ror1 gene in the centromeric region of barley chromosome 1H. , 2001, Plant physiology.

[11]  L. Talbert,et al.  Identification of barley genome segments introgressed into wheat using PCR markers , 2001 .

[12]  H. Hirochika,et al.  Identification of YAC clones containing the mutable slender glume locus slg in rice (Oryza sativa L.). , 2001, Genome.

[13]  J. Bader The relative power of SNPs and haplotype as genetic markers for association tests. , 2001, Pharmacogenomics.

[14]  L. Talbert,et al.  Identification of barley genome segments introgressed into wheat using PCR markers. , 2001, Genome.

[15]  R. J. Cho,et al.  A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. , 2000, Plant physiology.

[16]  N. Schork,et al.  Single nucleotide polymorphisms and the future of genetic epidemiology , 2000, Clinical genetics.

[17]  V. Kanazin,et al.  Electrophoretic detection of single-nucleotide polymorphisms. , 2000, BioTechniques.

[18]  A. Graner,et al.  Sequence analysis and gene identification in a set of mapped RFLP markers in barley (Hordeum vulgare). , 1999, Genome.

[19]  T. Komatsuda,et al.  Map construction of sequence-tagged sites (STSs) in barley (Hordeum vulgare L.) , 1999, Theoretical and Applied Genetics.

[20]  T. Ideker,et al.  Mining SNPs from EST databases. , 1999, Genome research.

[21]  Stephen J. Chanock,et al.  Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips , 1999, Nature Biotechnology.

[22]  A. Syvänen From gels to chips: “Minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms , 1999, Human mutation.

[23]  Daniel R. Richards,et al.  Direct allelic variation scanning of the yeast genome. , 1998, Science.

[24]  P. Kwok,et al.  Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. , 1998, Genome research.

[25]  C. Nusbaum,et al.  Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. , 1998, Science.

[26]  E. Nevo,et al.  AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. , 1997, Genome.

[27]  I. Smirnov,et al.  Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. , 1997, Genome research.

[28]  D. Kudrna,et al.  Characterizing and exploiting genetic diversity and quantitative traits in barley (Hordeum vulgare) using AFLP markers. , 1997 .

[29]  P. Kwok,et al.  Template-directed dye-terminator incorporation (TDI) assay: a homogeneous DNA diagnostic method based on fluorescence resonance energy transfer. , 1997, Nucleic acids research.

[30]  A. Syvänen,et al.  Multiplex, fluorescent, solid-phase minisequencing for efficient screening of DNA sequence variation. , 1996, Clinical chemistry.

[31]  A. Metspalu,et al.  Mutation detection by solid phase primer extension , 1996, Human mutation.

[32]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[33]  S. Kwok,et al.  A guide to the design and use of mismatched and degenerate primers. , 1994, PCR methods and applications.

[34]  F. Ausubel,et al.  A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. , 1993, The Plant journal : for cell and molecular biology.

[35]  John M. Martin,et al.  Diversity among North American Spring Barley Cultivars Based on Coefficients of Parentage , 1991 .

[36]  A. Munnich,et al.  Single-strand conformation polymorphism for detection of mutations and base substitutions in phenylketonuria. , 1991, American journal of human genetics.

[37]  B. K. Pal,et al.  Allele specific polymerase chain reaction , 1991 .

[38]  S. Chao,et al.  A partial map of the barley genome incorporating restriction fragment length polymorphism, polymerase chain reaction, isozyme, and morphological marker loci. , 1990, Genome.

[39]  C. Levenson,et al.  Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. , 1990, Nucleic acids research.

[40]  L. Hood,et al.  A common language for physical mapping of the human genome. , 1989, Science.