Generalized polynomials, operational identities and their applications

[1]  Multivariable Lagrange Expansion and Generalization of Carlitz–Srivastava Mixed Generating Functions , 2001 .

[2]  Giuseppe Dattoli,et al.  The generalized Laguerre polynomials, the associated Bessel functions and application to propagation problems , 2000 .

[3]  Two variable Lagrange expansion and new families of mixed generating functions , 1999, ANNALI DELL UNIVERSITA DI FERRARA.

[4]  Giuseppe Dattoli,et al.  Operational rules and arbitrary order Hermite generating functions , 1998 .

[5]  MISCELLANEOUS IDENTITIES OF GENERALIZED HERMITE POLYNOMIALS , 1998 .

[6]  G. Dattoli,et al.  GENERALISED GENERATING FUNCTIONS AND LIENARD-WIECHERT INTEGRAL , 1998 .

[7]  S. Lorenzutta,et al.  Theory of multiindex multivariable Bessel functions and Hermite polynomials , 1998 .

[8]  M. Martini,et al.  Thermally stimulated luminescence: New perspectives in the study of defects in solids , 1997 .

[9]  Giuseppe Dattoli,et al.  Evolution operator equations: Integration with algebraic and finitedifference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory , 1997 .

[10]  Giuseppe Dattoli,et al.  Theory and applications of generalized Bessel functions , 1996 .

[11]  Arbitrary-order Hermite generating functions for obtaining arbitrary-order coherent and squeezed states , 1995, quant-ph/9506008.

[12]  A. W. Kemp,et al.  A treatise on generating functions , 1984 .

[13]  H. Srivastava Some generalizations of Carlitz's theorem. , 1979 .

[14]  L. Carlitz A Class of Generating Functions , 1977 .

[15]  W. Louisell Quantum Statistical Properties of Radiation , 1973 .

[16]  A. Friedman Foundations of modern analysis , 1970 .

[17]  J. Dieudonne Foundations of Modern Analysis , 1969 .