A Fast Calibration Method for Dynamic Lever-Arm Parameters for IMUs Based on the Backtracking Scheme

Calibration is vital to improving the accuracy of the strapdown inertial navigation system (SINS). Calibration is one of the crucial phases before the operation of SINS and requires high accuracy and speed. Traditional system-level calibration methods have the disadvantages of long calibration times and complicated path design. A fast calibration method for the lever arm and other error parameters is proposed in this article. To shorten the calibration time and improve the calibration accuracy, a backtracking calibration method in inertial frames based on the reduced-order Kalman filter is proposed. Simulations and experiments are given to illustrate the effectiveness of the novel calibration method. The calibration process can be completed in 10 min, which is greatly shortened compared with traditional methods. The calibration time is shortened, and the calibration accuracy is improved. Furthermore, navigation experiments show that the velocity and position accuracies of the SINS are improved significantly after compensation with the calibration results, fully illustrating the significance of the proposed calibration method in improving the navigation performance.

[2]  Jian Wang,et al.  A Fast SINS Initial Alignment Method Based on RTS Forward and Backward Resolution , 2017, J. Sensors.

[3]  Rong Wang,et al.  A new dynamic calibration method for IMU deterministic errors of the INS on the Hypersonic Cruise Vehicles , 2014 .

[4]  Yang Jie Calibration and optimal compensation for size effect parameters of laser gyro SINS , 2009 .

[5]  Fernando V. Lima,et al.  Covariance and State Estimation of Weakly Observable Systems: Application to Polymerization Processes , 2013, IEEE Transactions on Control Systems Technology.

[6]  Ningfang Song,et al.  Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units , 2016, Sensors.

[7]  Fangjun Qin,et al.  A Novel Autonomous Initial Alignment Method for Strapdown Inertial Navigation System , 2017, IEEE Transactions on Instrumentation and Measurement.

[8]  Qian Zhang,et al.  An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System , 2015, Sensors.

[9]  Naser El-Sheimy,et al.  A new multi-position calibration method for MEMS inertial navigation systems , 2007 .

[10]  Zhaoxing Lu,et al.  Instantaneous observable degree modeling based on movement measurement for airborne POS , 2019, Aerospace Science and Technology.

[11]  Rong Zhang,et al.  A Three-Stage Accelerometer Self-Calibration Technique for Space-Stable Inertial Navigation Systems , 2018, Sensors.

[12]  Bin Gu,et al.  State Parameter Adjustment Filtering Method of Airborne POS Based on Instantaneous Observable Degree Model , 2018, IEEE Transactions on Instrumentation and Measurement.

[13]  Guo Xiao-son Measurement augmentation based fast initial alignment of SINS , 2014 .

[14]  Takeo Kanade,et al.  IMU Self-Calibration Using Factorization , 2013, IEEE Transactions on Robotics.

[15]  Zengjun Liu,et al.  An Accelerometers-Size-Effect Self-Calibration Method for Triaxis Rotational Inertial Navigation System , 2018, IEEE Transactions on Industrial Electronics.

[16]  Wanli Li,et al.  A novel backtracking navigation scheme for Autonomous Underwater Vehicles , 2014 .

[17]  Zhihua Wang,et al.  Schmidt-Kalman Filter for Navigation Biases Mitigation during Mars Entry , 2015 .

[18]  Xinlong Wang Fast alignment and calibration algorithms for inertial navigation system , 2009 .

[19]  Song Lailiang The Influence of Turntable Fixing Errors on Optical Gyro Strapdown Inertial System Calibration , 2013 .

[20]  Bo Wang,et al.  Analysis and Calibration of the Nonorthogonal Angle in Dual-Axis Rotational INS , 2017, IEEE Transactions on Industrial Electronics.

[21]  I. Bar-Itzhack,et al.  Observability analysis of piece-wise constant systems. II. Application to inertial navigation in-flight alignment (military applications) , 1992 .

[22]  Jiazhen Lu,et al.  A Full-Parameter Self-Calibration Method Based on Inertial Frame Filtering for Triaxis RINS Under Swaying Base , 2019, IEEE Sensors Journal.

[23]  Qingzhong Cai,et al.  An accurate calibration method for accelerometer nonlinear scale factor on a low-cost three-axis turntable , 2014 .

[24]  Jiancheng Fang,et al.  Error Analysis and Gyro-Bias Calibration of Analytic Coarse Alignment for Airborne POS , 2012, IEEE Transactions on Instrumentation and Measurement.

[25]  Vladimír Havlena,et al.  Schmidt-Kalman Filters for Systems with Uncertain Parameters and Asynchronous Sampling , 2018, 2018 18th International Conference on Control, Automation and Systems (ICCAS).

[26]  Shashi Poddar,et al.  A Comprehensive Overview of Inertial Sensor Calibration Techniques , 2017 .

[27]  Shun-qing Ren,et al.  A Separated Calibration Method for Inertial Measurement Units Mounted on Three-Axis Turntables , 2018, Sensors.

[28]  Lei Wang,et al.  A Self-Calibration Method for Accelerometer Nonlinearity Errors in Triaxis Rotational Inertial Navigation System , 2017, IEEE Transactions on Instrumentation and Measurement.