River bank filtration in Haridwar, India: removal of turbidity, organics and bacteria

Improvement in the quality of river water filtered through a 17-m thick sand-gravel unconfined aquifer at a production well surrounded by surface-water bodies, in Haridwar (India), was studied. Distances between surface water sources and the production well are more than 115 m, and the shortest travel times are 77 and 84 days for monsoon and non-monsoon periods, respectively. During the monsoon period, surface water exhibited increased turbidity by 50–100 times, bacterial count of around 10 times and decreased electrical conductivity of around 0.6 times compared to non-monsoon samples. The quality of abstracted bank filtrate, however, was found not to significantly vary. In non-monsoon months, riverbank filtration resulted in a reduction of turbidity and coliforms by 1 and 3 logs, respectively. For monsoonal months, this increased to more than 2 and 4 logs in turbidity and coliforms reduction, respectively. UV absorbance was also found to be reduced to about 1 log during monsoon season. Results from column studies confirmed that a retention time of around 5 days is adequate to achieve more than 99.9% removal of coliforms.RésuméL’amélioration de la qualité de l’eau de rivière filtrée à travers un aquifère sablo-graveleux libre et épais de 17 m vers un puits d’exploitation entouré de masses d’eau superficielles a été étudiée. Les distances entre les sources d’eau de surface et le puits de production sont supérieures à 115 m, et les temps de transit minimum sont de 77 et 84 jours, respectivement en période et hors période de mousson. Sur les prélèvements effectués durant la mousson, la turbidité des eaux de surface s’avère multipliée par 50 à 100, les comptages de bactéries par 10, alors que la conductivité est diminuée d’un facteur 0.6 par rapport au reste de l’année. La qualité du filtrat exploité, cependant, ne varie pas de manière significative. Hors période de mousson, la filtration par les berges diminue la turbidité et les coliformes respectivement de 1 et 3 unités logarithmiques. Durant la mousson, cette diminution est portée à 2 et 4 unités logarithmiques; l’absorbance des UV est également réduite d’une unité logarithmique. Les résultats des études expérimentales en colonnes ont confirmé que des temps de séjour de l’ordre de 5 jours suffisent à supprimer 99.9% des coliformes.ResumenSe estudió la mejora en la calidad del agua de río filtrada a través de un acuífero no confinado de arena y grava, de 17 m de espesor, en un pozo de producción rodeado por cuerpos de agua superficial, en Haridwar (India). Las distancias entre las fuentes de agua superficial y el pozo de producción son mayores que 115 m, y los tiempos de tránsito más cortos son 77 y 84 días para períodos monzónicos y no monzónicos, respectivamente. Durante el período monzónico, el agua superficial exhibió una turbiedad incrementada de 50–100 veces, un recuento de bacterias de cerca de 10 veces y una disminución de la conductividad eléctrica de alrededor de 0.6 veces comparada con las muestras del período no monzónico. Sin embargo, la calidad del agua extraída de la filtración por las márgenes del río se encontró que no varía significativamente. En los meses no monzónicos, la filtración por la margen del río produjo una disminución de la turbiedad y de coliformes en 1 y 3 logs, respectivamente. Para los meses monzónico, este incremento de más que 2 y 4 logs en la reducción de turbiedad y coliformes, respectivamente. También se encontró que la absorción UV se redujo en alrededor de 1 log durante la estación monzónica. Los resultados a partir de estudios de la columna confirmaron que un tiempo de retención de alrededor de 5 días es adecuado para lograr mas del 99.9% de remoción de coliformes.摘要在一为地表水体环绕的生产井, 对印度哈里瓦(Haridwar)地区河水在经过17m厚的砂砾潜水含水层之后水质发生改善的现象进行了研究。地表水体和生产井之间的距离大于115 m, 季风季和非季风季的最短传播时间分别为77和84天。在季风季, 地表水的浑浊度比非季风季高50-100倍, 细菌数目多10倍左右, 电导率则下降0.6倍。但提取的河岸带滤液质量并未显著改变。在非季风季, 河岸渗滤作用导致浊度和大肠杆菌数分别下降1和3 成 (logs)。 研究发现, 季风季UV吸光率也减少约1成。沙柱研究结果证实, 5天的滞留时间即可去除多于99.9%的大肠杆菌。ResumoFoi estudada a melhoria da qualidade da água de rio filtrada através de um aquífero livre de 17 m de espessura, constituído por areia e cascalho, num poço de produção rodeado por corpos de água superficiais, em Haridwar (Índia). As distâncias entre as fontes de águas superficiais e o poço de produção ultrapassam os 115 m, e os tempos de trânsito mais curtos são 77 e 84 dias para os períodos da monção e não-monção, respectivamente. Durante o período de monção, as águas superficiais apresentaram aumentos da turbidez de 50–100 vezes, a contagem de bactérias aumentou cerca de 10 vezes e foi verificada uma diminuição na condutividade eléctrica de cerca de 0.6 vezes em comparação com amostras no período de não-monção. Porém, a qualidade da água filtrada pelo aquífero aluvionar, não sofreu variação significativa. Nos meses de não-monção, a filtração pelas margens do rio resultou numa redução da turbidez e coliformes por 1 e 3 logs, respectivamente. Para os meses de monção, este valor aumentou para mais de 2 e 4 logs na redução da turbidez e coliformes, respectivamente. Durante a estação das monções também foi encontrada uma redução da absorção UV de cerca de 1 log. Resultados de estudos em coluna confirmaram que um tempo de retenção de cerca de 5 dias é suficiente para atingir mais de 99.9% de remoção de coliformes.

[1]  P. Baveye,et al.  Effect of sodium chloride on transport of bacteria in a saturated aquifer material , 1991, Applied and environmental microbiology.

[2]  L. Pang,et al.  Transport of bacteria and bacteriophages in irrigated effluent into and through an alluvial gravel aquifer , 1997 .

[3]  C. Gerba,et al.  Groundwater Pollution Microbiology , 1994 .

[4]  M. Noonan,et al.  Rhodamine WT and Bacillus subtilis Transport through an Alluvial Gravel Aquifer , 1998 .

[5]  Jack Z. Wang Riverbank Filtration Case Study at Louisville, Kentucky , 2002 .

[6]  J. Schubert Hydraulic aspects of riverbank filtration—field studies , 2002 .

[7]  Zekâi Şen,et al.  Determination of Hydraulic Conductivity from Complete Grain‐Size Distribution Curves , 1993 .

[8]  K. Hiscock,et al.  Factors affecting denitrification during infiltration of river water into a sand and gravel aquifer in Saxony, Germany , 1998 .

[9]  W. P. Ball,et al.  riverbank filtration—fate of DBP precursors and selected microorganisms , 2003 .

[10]  J. Schijven,et al.  Removal and inactivation of viruses by drinking water treatment processes under full scale conditions , 1995 .

[11]  Takashi Asano,et al.  Artificial recharge of groundwater , 1985 .

[12]  James Crook,et al.  Water Reuse in California , 1985 .

[13]  Christoph Merz,et al.  Sulfide oxidation and sulfate reduction in a shallow groundwater system (Oderbruch Aquifer, Germany) , 2003 .

[14]  M. Elimelech,et al.  The promise of bank filtration. , 2002, Environmental science & technology.

[15]  F. Jüttner Elimination of terpenoid odorous compounds by slow sand and river bank filtration of the Ruhr River, germany , 1995 .

[16]  Michel Detay,et al.  River bank filtration: modelling of the changes in water chemistry with emphasis on nitrogen species , 1997 .

[17]  H. Börnick,et al.  Laboratory tests for simulating attenuation processes of aromatic amines in riverbank filtration , 2002 .

[18]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .

[19]  Howard John Fallowfield,et al.  The potential of riverbank filtration for drinking water supplies in relation to microsystin removal in brackish aquifers , 2002 .

[20]  William D. Gollnitz,et al.  RBF as a Microbial Treatment Process , 2003 .

[21]  Philip Berger Removal of Cryptosporidium Using Bank Filtration , 2002 .

[22]  Vijay P. Singh,et al.  Hydrology and Water Resources of India , 2007 .

[23]  David W. Hendricks,et al.  Slow sand filtration: influences of selected process variables , 1985 .

[24]  P. Martikainen,et al.  Humus transformation at the bank filtration water plant , 1994 .

[25]  Wolfgang Kuehn,et al.  Riverbank Filtration: An Overview , 2000 .

[26]  T. Grischek,et al.  Lake bank filtration at Nainital, India: water-quality evaluation , 2008 .

[27]  Chittaranjan Ray,et al.  Riverbank filtration : improving source-water quality , 2002 .

[28]  J. Schijven,et al.  Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands , 1999 .

[29]  R. Smith,et al.  Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply , 2002 .

[30]  W. P. Ball,et al.  Reduction in Disinfection Byproduct Precursors and Pathogens During Riverbank Filtration at Three Midwestern United States Drinking-Water Utilities , 2002 .

[31]  S. Hassanizadeh,et al.  Removal of microorganisms by deep well injection , 2000 .

[32]  R. Irmscher,et al.  Riverbank filtration for drinking water supply - a proven method, perfect to face today's challenges , 2002 .

[33]  I. Miettinen,et al.  Removal of Pathogens, Surrogates, Indicators, and Toxins Using Riverbank Filtration , 2002 .

[34]  J. Schijven,et al.  Reduction of FRNA-bacteriophages and faecal indicator bacteria by dune infiltration and estimation of sticking efficiencies , 1998 .