GdN/SmN superlattices; influence of a Zeeman/exchange conflict

GdN and SmN are two of the lanthanide nitrides, most of which are intrinsic ferromagnetic semiconductors. Superlattices comprising the pair offer a unique opportunity to investigate heterojunctions that feature simultaneous conductivity and magnetic interface influences. Here we report an investigation of these influences, using magnetisation and X-ray magnetic circular dichroism for magnetic effects, and magnetoresistance and Hall effect studies of their electrical conductance. Magnetic data show clear signatures of a conflicting Zeeman vs. interfacial exchange and the magnetic disruption that results, while resistivity and Hall measurements show conduction in both GdN and SmN.

[1]  S. Vézian,et al.  Magnetoresistance of epitaxial GdN films , 2020 .

[2]  B. Ruck,et al.  Coexisting structural phases in the catalytically driven growth of rock salt GdN , 2020, Materials Research Express.

[3]  M. Mizumaki,et al.  Tunable magnetic exchange springs in semiconductor GdN/NdN superlattices , 2019, Physical Review B.

[4]  R. Buckley,et al.  Optical spectroscopy of SmN: Locating the 4f conduction band , 2019, Physical Review B.

[5]  B. Ruck,et al.  Breaking Molecular Nitrogen under Mild Conditions with an Atomically Clean Lanthanide Surface , 2018, ACS omega.

[6]  H. Trodahl,et al.  Anomalous Hall effect in SmN: Influence of orbital magnetism and 4f -band conduction , 2018, Physical Review B.

[7]  T. Sands,et al.  Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials , 2018, Applied Physics Reviews.

[8]  S. Vézian,et al.  Electron transport in heavily doped GdN , 2018 .

[9]  H. Trodahl,et al.  Carrier-controlled anomalous Hall effect in an intrinsic ferromagnetic semiconductor , 2017 .

[10]  H. Trodahl,et al.  On the ferromagnetic ground state of SmN , 2015, 1511.04820.

[11]  N. Brookes,et al.  Twisted phase of the orbital-dominant ferromagnet SmN in a GdN/SmN heterostructure , 2015, 1504.04425.

[12]  M. Khalfioui,et al.  Highly resistive epitaxial Mg-doped GdN thin films , 2014, 1410.8228.

[13]  A. I. Figueroa,et al.  X-ray magnetic circular dichroism—A versatile tool to study magnetism , 2014 .

[14]  S. Stemmer,et al.  Two-Dimensional Electron Gases at Complex Oxide Interfaces , 2014 .

[15]  E. Anton,et al.  Spin/orbit moment imbalance in the near-zero moment ferromagnetic semiconductor SmN , 2013, 1301.6829.

[16]  Y. Cordier,et al.  Role of magnetic polarons in ferromagnetic GdN , 2012, 1210.3441.

[17]  N. Plank,et al.  Rare-earth mononitrides , 2012, 1208.2410.

[18]  A. Fert Nobel Lecture: Origin, development, and future of spintronics , 2008 .

[19]  H. Trodahl,et al.  Near-zero-moment ferromagnetism in the semiconductor SmN , 2008, 0804.1595.

[20]  H. Trodahl,et al.  Ferromagnetic redshift of the optical gap in GdN , 2007, 0705.2912.

[21]  Walter R. L. Lambrecht,et al.  Electronic structure of rare-earth nitrides using the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry , 2007 .

[22]  H. Trodahl,et al.  Ferromagnetic resonance study of GdN thin films with bulk and extended lattice constants , 2006 .

[23]  H. Trodahl,et al.  Semiconducting ground state of GdN thin films , 2006 .

[24]  K. Fauth,et al.  GdN thin films: Bulk and local electronic and magnetic properties , 2005 .

[25]  A. Twardowski,et al.  Antiferromagnetic interlayer coupling in ferromagnetic semiconductor EuS/PbS(001) superlattices , 2001, cond-mat/0102194.

[26]  S. Subramanian High electron mobility transistors , 1990 .

[27]  C. Weisbuch,et al.  The Physics of the Quantum Well Laser , 1987 .

[28]  F. Hulliger Chapter 33 Rare earth pnictides , 1979 .