Syngas Combustion Kinetics and Applications

Strong interest in the use of coal-derived syngas in gas turbines has led to recent experimental studies that highlight the important features of H2/CO combustion at high pressures and relatively low temperatures. In the present study these investigations are reviewed, evaluated, and chemical kinetic updates based on these new results are discussed. Disparities observed between experimental measurements and kinetic model predictions of high pressure ignition delay and burning velocity are noted and the effect that surfaces, trace impurities, and contaminants may have on the H2/CO kinetic system are elucidated. In particular, the impurity coupling with NOx is discussed in relation to energy conversion processes involving hydrogen as a fuel component. An example of its importance to pre-ignition in reciprocating engine applications is also demonstrated.

[1]  W. Demore Rate constant and possible pressure dependence of the reaction OH + HO/sub 2/ , 2002 .

[2]  Vincent McDonell,et al.  New syngas/air ignition data at lower temperature and elevated pressure and comparison to current kinetics models , 2007 .

[3]  S. Shabunya,et al.  High-Temperature Ignition of Hydrogen and Air at High Pressures Downstream of the Reflected Shock Wave , 2004 .

[4]  Grunde Jomaas,et al.  High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion , 2007 .

[5]  W. Gardiner,et al.  Chemical Kinetics of the Shock-Initiated Combustion of Hydrogen at High Pressure and Low Temperatures , 1969 .

[6]  M. Vanpee,et al.  A study of flame inhibition by metal compounds , 1979 .

[7]  Kunio Terao Explosion Limits of Hydrogen-Oxygen Mixture as a Stochastic Phenomenon , 1977 .

[8]  Marcos Chaos,et al.  Computational singular perturbation analysis of two-stage ignition of large hydrocarbons. , 2006, The journal of physical chemistry. A.

[9]  Kenneth J. Witt,et al.  High temperature rate coefficient measurements of H + O2 chain-branching and chain-terminating reaction , 2005 .

[10]  R. I. Soloukhin,et al.  On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves , 1965 .

[11]  Elaine S. Oran,et al.  Origins of the deflagration-to-detonation transition in gas-phase combustion , 2007 .

[12]  Klaus Luther,et al.  Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions , 2002 .

[13]  R. Steeper,et al.  The hydrogen-fueled internal combustion engine : a technical review. , 2006 .

[14]  S. Tse,et al.  MORPHOLOGY AND BURNING RATES OF EXPANDING SPHERICAL FLAMES IN H 2 / O 2 / INERT MIXTURES UP TO 60 ATMOSPHERES , 2001 .

[15]  L. Qiu,et al.  Rate constant of the hydroxyl + perhydroxyl (HO2) reaction from 252 to 420 K , 1984 .

[16]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[17]  Robert H. Williams,et al.  Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions , 2005 .

[18]  C. Mader Initiation of Detonation , 2007 .

[19]  A. K. Oppenheim Dynamic features of combustion , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  H. Olivier,et al.  Ignition of shock-heated H2-air-steam mixtures , 2003 .

[21]  Dr.J. van Steenis Combustion, flames and explosion of gases : Academic Press Inc., Publishers, New York 1951. 795pp. Price $14. , 1952 .

[22]  Ulrich Maas,et al.  Ignition processes in hydrogenoxygen mixtures , 1988 .

[23]  R. Sawyer THE HOMOGENEOUS GAS PHASE KINETICS OF REACTIONS IN THE HYDRAZINE-NITROGEN TETROXIDE PROPELLANT SYSTEM , 1965 .

[24]  A. Hofzumahaus,et al.  VUV Flash Photolysis Study of the Reaction of HO with HO2 at 1 atm and 298 K , 1982 .

[25]  J. Hahn,et al.  Pressure dependence of the reaction H + O2(+Ar) → HO2(+Ar) in the range 1–900 bar and 300–700 K , 2004 .

[26]  H. Miyama,et al.  Kinetics of Hydrogen—Oxygen Reaction in Shock Waves , 1964 .

[27]  Robert J. Kee,et al.  PSE: a Fortran program for modeling well-stirred reactors , 1986 .

[28]  Pehr Björnbom,et al.  Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends , 2005 .

[29]  S. Davis,et al.  Combustion of CO/H2 mixtures at elevated pressures ☆ , 2007 .

[30]  Wing Tsang,et al.  Critical Review of rate constants for reactions of hydrated electronsChemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane , 1988 .

[31]  Garry L. Schott,et al.  Kinetic Studies of Hydroxyl Radicals in Shock Waves. II. Induction Times in the Hydrogen-Oxygen Reaction , 1958 .

[32]  Frederick L. Dryer,et al.  On the dependence of the rate of moist CO oxidation on O2 concentration at atmospheric pressure , 1993 .

[33]  Jozef Peeters,et al.  Reaction mechanisms and rate constants ofelementary steps in methane-oxygen flames , 1973 .

[34]  Anthony M. Dean,et al.  A shock tube study of the H2/O2/CO/Ar and H2/N2O/CO/Ar Systems: Measurement of the rate constant for H + N2O = N2 + OH , 1978 .

[35]  Branko Ruscic,et al.  On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl , 2002 .

[36]  J. Troe,et al.  Rate constants of the reaction HO+H2O2→HO2+H2O at T⩾1000 K , 1992 .

[37]  Richard A. Yetter,et al.  A combined stability‐sensitivity analysis of weak and strong reactions of hydrogen/oxygen mixtures , 1991 .

[38]  Marcos Chaos,et al.  A high-temperature chemical kinetic model for primary reference fuels , 2007 .

[39]  J. Troe Detailed modeling of the temperature and pressure dependence of the reaction H+O2 (+M)→HO2 (+M) , 2000 .

[40]  and W C Gardiner,et al.  Chemical Kinetics of High Temperature Combustion , 1980 .

[41]  H. Wagner,et al.  Influence of additives on the velocity of laminar flames , 1961 .

[42]  Bradley T. Zigler,et al.  An experimental investigation of iso-octane ignition phenomena , 2007 .

[43]  Branko Ruscic,et al.  Active Thermochemical Tables: accurate enthalpy of formation of hydroperoxyl radical, HO2. , 2006, The journal of physical chemistry. A.

[44]  B. J. Tyler,et al.  Reaction of hydrogen atoms with nitrogen dioxide , 1962 .

[45]  C. Shaddix,et al.  CONTAMINATION OF CARBON MONOXIDE WITH METAL CARBONYLS: IMPLICATIONS FOR COMBUSTION RESEARCH , 2007 .

[46]  TEMPERATURE DEPENDENCE OF THE GAS-PHASE SELF-REACTION OF HYDROPEROXO RADICALS IN THE PRESENCE OF AMMONIA , 1980 .

[47]  Richard A. Yetter,et al.  New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive kinetic modeling , 1994 .

[48]  P. Sabia,et al.  Numerical Analysis of Hydrogen Mild Combustion , 2006 .

[49]  C. Sung,et al.  Ignition of CO/H2/N2 versus heated air in counterflow: experimental and modeling results , 2000 .

[50]  Chung King Law,et al.  Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres , 2000 .

[51]  Simone Hochgreb,et al.  Hydrogen autoignition at pressures above the second explosion limit (0.6-4.0 MPa) , 1998 .

[52]  S. Matsuda Gas Phase Homogeneous Catalysis in Shock Waves. II. The Oxidation of Carbon Monoxide by Oxygen in the Presence of Iron Pentacarbonyl , 1972 .

[53]  G. Adomeit,et al.  Gas Dynamic Features of Self Ignition of Non Diluted Fuel/Air Mixtures at High Pressure , 1996 .

[54]  W. W. Haskell,et al.  Non-uniform ignition processes in rapid-compression machines , 1969 .

[55]  F. Dryer,et al.  A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion , 2007 .

[56]  V. Babushok,et al.  Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbonyl 1 1 Officia , 1999 .

[57]  U. Maas,et al.  Ignition Processes in Hydrogen-Oxygen Mixtures , 2010 .

[58]  R. Yetter,et al.  Flow reactor studies and kinetic modeling of the H2/O2 reaction , 1999 .

[59]  Bradley T. Zigler,et al.  An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications , 2007 .

[60]  J. Burrows,et al.  Modulated photolysis of the ozone—water vapour system: kinetics of the reaction of OH with HO2 , 1981 .

[61]  Bengt Johansson,et al.  The Hcci Combustion Process in a Single Cycle-High-Speed Fuel Tracer Lif and Chemiluminescence Imaging , 2002 .

[62]  Sebastian Verhelst,et al.  Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa , 2007 .

[63]  Yu. M. Gershenzon,et al.  Reactions of HO2 with NO, OH and HO2 studied by EPR/LMR spectroscopy , 1984 .

[64]  Richard A. Yetter,et al.  Some interpretive aspects of elementary sensitivity gradients in combustion kinetics modeling , 1985 .

[65]  F. Dryer,et al.  Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether , 2008 .

[66]  R. Barnes,et al.  Iron pentacarbonyl determination in carbon monoxide , 1999 .

[67]  S. Fujimoto Chemical Reaction in a Shock Wave. I. The Ignition Delay of a Hydrogen-Oxygen Mixture in a Shock Tube , 1963 .

[68]  F. Egolfopoulos,et al.  An optimized kinetic model of H2/CO combustion , 2005 .

[69]  Richard A. Yetter,et al.  FLOW REACTOR STUDIES AND KINETIC MODELING OF THE H2/O2/NOX AND CO/H2O/O2/NOX REACTIONS , 1999 .

[70]  R. Yetter,et al.  Measurement of the rate constant for H+O2+M→HO2+M (M=N2, Ar) using kinetic modeling of the high-pressure H2/O2/NOx reaction , 1998 .

[71]  W. Demore Reaction of hydroperoxo radicals with ozone and the effect of water vapor on hydroperoxo kinetics , 1979 .

[72]  G. B. Skinner,et al.  Ignition Delays of a Hydrogen—Oxygen—Argon Mixture at Relatively Low Temperatures , 1965 .

[73]  J. Troe,et al.  Theoretical studies of the HO + O HO2 H + O2 reaction. II. Classical trajectory calculations on an ab initio potential for temperatures between 300 and 5000 K. , 2001 .

[74]  W. Demore Reaction of HO2 with O3 and the effect of water vapor on HO2 kinetics , 1979 .

[75]  Chih-Jen Sung,et al.  Reaction kinetics of CO + HO(2) --> products: ab initio transition state theory study with master equation modeling. , 2007, The journal of physical chemistry. A.

[76]  J. Boris,et al.  Weak and strong ignition. II. Sensitivity of the hydrogenoxygen system , 1982 .

[77]  Xiaoguo Tang,et al.  Ford P2000 Hydrogen Engine Dynamometer Development , 2002 .

[78]  G. Linteris,et al.  The role of particles in the inhibition of counterflow diffusion flames by iron pentacarbonyl , 2002 .

[79]  Bengt Johansson,et al.  Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine , 2002 .

[80]  B. Ruscic,et al.  Reflected shock tube studies of high-temperature rate constants for OH + NO2 --> HO2 + NO and OH + HO2 --> H2O + O2. , 2006, The journal of physical chemistry. A.

[81]  S. Matsuda Gas-phase homogeneous catalysis in shock waves. III. Oxidation of carbon monoxide by oxygen in the presence of nickel carbonyl , 1972 .

[82]  A. D. Skinner,et al.  Shock-tube studies of fuel-air ignition characteristics. Technical report, 1 April 1964-26 July 1965 , 1965 .

[83]  Kevin J. Hughes,et al.  Significance of the HO2 + CO reaction during the combustion of CO + H2 mixtures at high pressures , 2007 .

[84]  Jürgen Troe,et al.  Shock wave study of the reaction HO2+HO2→H2O2+O2 : Confirmation of a rate constant minimum near 700 K , 1990 .

[85]  A. Hayhurst,et al.  Heat release and radical recombination in premixed fuel-lean flames of H2+ O2+ N2. Rate constants for H + OH + M → H2O + M and HO2+ OH → H2O + O2 , 1988 .

[86]  Michael Louis Vermeersch A variable pressure flow reactor for chemical kinetic studies: Hydrogen, methane and butane oxidation at 1 to 10 atmospheres and 880 to 1,040 K , 1991 .

[87]  L. F. Keyser Kinetics of the reaction hydroxyl + hydroperoxo .fwdarw. water + oxygen from 254 to 382 K , 1988 .

[88]  S. J. Gentry,et al.  The oxidation of hydrogen and carbon monoxide mixtures over platinum , 1978 .

[89]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[90]  G. Linteris,et al.  Experimental study of the inhibition of premixed and diffusion flames by iron pentacarbonyl , 1996 .

[91]  J. Dewar,et al.  The Physical and Chemical Properties of Iron Carbonyl , 1905 .

[92]  Roger R. Craig A SHOCK TUBE STUDY OF THE IGNITION DELAY OF HYDROGEN-AIR MIXTURES NEAR THE SECOND EXPLOSION LIMIT , 1966 .

[93]  Marcos Chaos,et al.  Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures : Experimental data interpretation and kinetic modeling implications , 2008 .

[94]  Chih-Jen Sung,et al.  Fundamental Combustion Properties of H2/CO Mixtures: Ignition and Flame Propagation at Elevated Pressures , 2008 .

[95]  Zhenwei Zhao,et al.  Temperature‐dependent feature sensitivity analysis for combustion modeling , 2005 .

[96]  J. Troe,et al.  Shock wave studies of the reactions HO+H2O2→H2O+HO2 and HO+HO2→H2O+O2 between 930 and 1680 K , 1995 .

[97]  E. A. COULSON,et al.  The Fischer–Tropsch Process , 1950, Nature.

[98]  M. P. Burke,et al.  Measurements of hydrogen syngas flame speeds at elevated pressures , 2007 .

[99]  M. W. Slack,et al.  Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times , 1977 .

[100]  M. Pilling,et al.  Reaction Kinetics , 1937, Nature.

[101]  Richard A. Yetter,et al.  Autoignition of H2/CO at elevated pressures in a rapid compression machine , 2006 .

[102]  M. Kurylo,et al.  Mechanistic investigation of the hydroxyl + hydroperoxo reaction , 1981 .

[103]  Peter Glarborg,et al.  Hidden interactions—Trace species governing combustion and emissions , 2007 .

[104]  Mohamed I. Hassan,et al.  Markstein numbers and unstretched laminar burning velocities of wet carbon monoxide flames , 1996 .

[105]  J. Burrows,et al.  Rate coefficient for the reaction OH + HO2 = H2O + O2 at 1 atmosphere pressure and 308 K , 1981 .

[106]  G. Linteris,et al.  Inhibition of Premixed Carbon Monoxide-Hydrogen-Oxygen-Nitrogen Flames by Iron Pentacarbonyl , 2000 .

[107]  T. Lieuwen,et al.  Laminar flame speeds of H2/CO mixtures : Effect of CO2 dilution, preheat temperature, and pressure , 2007 .

[108]  Zhenwei Zhao,et al.  An updated comprehensive kinetic model of hydrogen combustion , 2004 .

[109]  J. Hessler Calculation of reactive cross sections and microcanonical rates from kinetic and thermochemical Data. , 1998 .

[110]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[111]  H. Coward Combustion, Flames and Explosions of Gases , 1938, Nature.

[112]  Y. Tsirkunov,et al.  Conjugate heat exchange in the initial stage of reflection of a viscous shock wave from a wall , 1986 .

[113]  Frank Behrendt,et al.  NUMERICAL MODELING OF CATALYTIC IGNITION , 1996 .

[114]  G. B. Kistiakowsky,et al.  Mechanism of Oxidation of Carbon Monoxide in Presence of Chromium Carbonyl , 1972 .

[115]  I. McLean,et al.  The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction , 1994 .

[116]  C. Westbrook,et al.  Chemical kinetic modeling of hydrocarbon combustion , 1984 .

[117]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[118]  Richard A. Yetter,et al.  Flow Reactor Studies of Carbon Monoxide/Hydrogen/ Oxygen Kinetics , 1991 .

[119]  Elaine S. Oran,et al.  Weak and strong ignition. I. Numerical simulations of shock tube experiments , 1982 .

[120]  Richard A. Yetter,et al.  A Comprehensive Reaction Mechanism For Carbon Monoxide/Hydrogen/Oxygen Kinetics , 1991 .

[121]  G. Adomeit,et al.  Self ignition of H2-air mixtures at high pressure and low temperature , 1995 .

[122]  D. D. Drysdale,et al.  Evaluated kinetic data for high temperature reactions , 1972 .

[123]  M. Su,et al.  Reflected shock tube studies of high-temperature rate constants for OH + C2H2 and OH + C2H4. , 2007, Physical chemistry chemical physics : PCCP.

[124]  L. F. Keyser Kinetics of the Reaction OH + HO2 → H2O + O2 from 254 to 382 K , 1988 .

[125]  A. Wagner,et al.  Rate Constants For H + O2 + M → HO2 + M in Seven Bath Gases , 2002 .

[126]  E. Petersen,et al.  Ignition and Oxidation of Lean CO/H2 Fuel Blends in Air , 2005 .

[127]  A. K. Oppenheim,et al.  On the shock-induced ignition of explosive gases , 1971 .

[128]  D. J. Wilhelm,et al.  Syngas production for gas-to-liquids applications: technologies, issues and outlook , 2001 .