Quantitative prediction of intermittent high-frequency oscillations in neural networks with supralinear dendritic interactions

The explanation of higher neural processes requires an understanding of the dynamics of complex, spiking neural networks. So far, modeling studies have focused on networks with linear or sublinear dendritic input summation. However, recent single-neuron experiments have demonstrated strongly supralinear dendritic enhancement of synchronous inputs. What are the implications of this amplification for networks of neurons? Here, I show numerically and analytically that such networks can generate intermittent, strong increases of activity with high-frequency oscillations; the models developed predict the shape of these events and the oscillation frequency. As an example, for the hippocampal region CA1, events with 200-Hz oscillations are predicted. I argue that these dynamics provide a plausible explanation for experimentally observed sharp-wave/ripple events. High-frequency oscillations can involve the replay of spike patterns. The models suggest that these patterns may reflect underlying network structures.

[1]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[2]  Steven J. Middleton,et al.  Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells , 2008, The European journal of neuroscience.

[3]  B. Sakmann,et al.  Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. , 1993, The Journal of physiology.

[4]  Misha Tsodyks,et al.  Computation by Ensemble Synchronization in Recurrent Networks with Synaptic Depression , 2002, Journal of Computational Neuroscience.

[5]  G. Buzsáki,et al.  High-Frequency Oscillations in the Output Networks of the Hippocampal–Entorhinal Axis of the Freely Behaving Rat , 1996, The Journal of Neuroscience.

[6]  W. Cowan,et al.  On the numbers of neurons on fields CA1 and CA3 of the hippocampus of Sprague-Dawley and Wistar rats , 1987, Brain Research.

[7]  M. Timme,et al.  Stable irregular dynamics in complex neural networks. , 2007, Physical review letters.

[8]  J. Magee,et al.  State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[9]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[10]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[11]  P. Somogyi,et al.  Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro , 1996, Hippocampus.

[12]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[13]  Nicolas Brunel,et al.  Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. , 2005, Journal of neurophysiology.

[14]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[15]  R. Tsien,et al.  Properties of synaptic transmission at single hippocampal synaptic boutons , 1995, Nature.

[16]  D Debanne,et al.  Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. , 1995, Journal of neurophysiology.

[17]  T. Kosaka,et al.  Gap Junctions Linking the Dendritic Network of GABAergic Interneurons in the Hippocampus , 2000, The Journal of Neuroscience.

[18]  F. Dudek,et al.  Electrophysiological evidence from glutamate microapplications for local excitatory circuits in the CA1 area of rat hippocampal slices. , 1988, Journal of neurophysiology.

[19]  Patrick R Hof,et al.  Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze–fracture replica immunogold labeling , 2007, Proceedings of the National Academy of Sciences.

[20]  S. Hestrin,et al.  Electrical synapses between Gaba-Releasing interneurons , 2001, Nature Reviews Neuroscience.

[21]  Daniel Lehmann,et al.  Modeling Compositionality by Dynamic Binding of Synfire Chains , 2004, Journal of Computational Neuroscience.

[22]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[23]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[24]  Andreas Draguhn,et al.  Induced sharp wave‐ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices , 2005, The Journal of physiology.

[25]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[26]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Roman R Poznanski,et al.  Dendritic integration in a recurrent network. , 2002, Journal of integrative neuroscience.

[28]  J. Csicsvari,et al.  Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave–Associated Population Events , 2000, Neuron.

[29]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[30]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[31]  G. Buzsáki,et al.  High-frequency network oscillation in the hippocampus. , 1992, Science.

[32]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[33]  Paul A. Rhodes Recoding Patterns of Sensory Input: Higher-Order Features and the Function of Nonlinear Dendritic Trees , 2008, Neural Computation.

[34]  W. Lytton,et al.  Local axon collaterals of area CA1 support spread of epileptiform discharges within CA1, but propagation is unidirectional , 2008, Hippocampus.

[35]  이영식 Communication 으로서의 영어교육 , 1986 .

[36]  Tim P Vogels,et al.  Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons , 2005, The Journal of Neuroscience.

[37]  Kenji Morita Possible Role of Dendritic Compartmentalization in the Spatial Working Memory Circuit , 2008, The Journal of Neuroscience.

[38]  N Spruston,et al.  Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. , 2000, Journal of neurophysiology.

[39]  A. Draguhn,et al.  Cellular and Network Mechanisms Underlying Spontaneous Sharp Wave–Ripple Complexes in Mouse Hippocampal Slices , 2003, The Journal of physiology.

[40]  Anthony N. Burkitt,et al.  A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input , 2006, Biological Cybernetics.

[41]  M. C. Angulo,et al.  Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. , 1999, Journal of neurophysiology.

[42]  Albert K. Lee,et al.  Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep , 2002, Neuron.

[43]  A. Aertsen,et al.  Conditions for Propagating Synchronous Spiking and Asynchronous Firing Rates in a Cortical Network Model , 2008, The Journal of Neuroscience.

[44]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[45]  Erik De Schutter,et al.  Mechanism of spontaneous and self‐sustained oscillations in networks connected through axo‐axonal gap junctions , 2007, The European journal of neuroscience.

[46]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[47]  G. Buzsáki,et al.  Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus , 1998, The Journal of Neuroscience.

[48]  P. Schwartzkroin,et al.  Axonal ramifications of hippocampal Ca1 pyramidal cells , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  R. Traub,et al.  Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro , 1998, Nature.

[50]  J. Csicsvari,et al.  Replay and Time Compression of Recurring Spike Sequences in the Hippocampus , 1999, The Journal of Neuroscience.

[51]  G. Buzsáki,et al.  tFast Network Oscillations in the Hippocampal CA1 Region of the Behaving Rat , 1999, The Journal of Neuroscience.

[52]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[53]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[54]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[55]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[56]  R. Traub,et al.  Axo-Axonal Coupling A Novel Mechanism for Ultrafast Neuronal Communication , 2001, Neuron.

[57]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[58]  Andreas Draguhn,et al.  Propagation of specific network patterns through the mouse hippocampus , 2008, Hippocampus.

[59]  R. Traub,et al.  High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions , 1999, Neuroscience.

[60]  Arvind Kumar,et al.  The High-Conductance State of Cortical Networks , 2008, Neural Computation.

[61]  I. Módy,et al.  High-frequency oscillations : What is normal and what is not ? , 2008 .

[62]  Michael E. Hasselmo,et al.  Coincidence Detection of Place and Temporal Context in a Network Model of Spiking Hippocampal Neurons , 2007, PLoS Comput. Biol..

[63]  Ernst,et al.  Synchronization induced by temporal delays in pulse-coupled oscillators. , 1995, Physical review letters.

[64]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[65]  B J Richmond,et al.  Stochastic nature of precisely timed spike patterns in visual system neuronal responses. , 1999, Journal of neurophysiology.

[66]  Alex M Thomson,et al.  Electrical coupling between pyramidal cells in adult cortical regions , 2007, Brain cell biology.

[67]  Giorgio A Ascoli,et al.  Incorporating anatomically realistic cellular-level connectivity in neural network models of the rat hippocampus. , 2005, Bio Systems.

[68]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[69]  I. Módy,et al.  Synaptic Communication among Hippocampal Interneurons: Properties of Spontaneous IPSCs in Morphologically Identified Cells , 1997, The Journal of Neuroscience.

[70]  P. Jonas,et al.  Efficacy and Stability of Quantal GABA Release at a Hippocampal Interneuron–Principal Neuron Synapse , 2000, The Journal of Neuroscience.

[71]  S. Mennerick,et al.  Action potential initiation and propagation in CA3 pyramidal axons. , 2007, Journal of neurophysiology.

[72]  R. Traub,et al.  Cellular mechanism of neuronal synchronization in epilepsy. , 1982, Science.

[73]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  R. Miles,et al.  Excitatory synaptic interactions between CA3 neurones in the guinea‐pig hippocampus. , 1986, The Journal of physiology.

[75]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[76]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[77]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[78]  Heinke,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2022 .

[79]  Roger D. Traub,et al.  A Model of High-Frequency Ripples in the Hippocampus Based on Synaptic Coupling Plus Axon–Axon Gap Junctions between Pyramidal Neurons , 2000, The Journal of Neuroscience.

[80]  D. Debanne,et al.  Release-Dependent Variations in Synaptic Latency: A Putative Code for Short- and Long-Term Synaptic Dynamics , 2007, Neuron.

[81]  Robert A. Pearce,et al.  Physiological evidence for two distinct GABAA responses in rat hippocampus , 1993, Neuron.

[82]  N. Tamamaki,et al.  Complete Axon Arborization of a Single CA3 Pyramidal Cell in the Rat Hippocampus, and its Relationship With Postsynaptic Parvalbumin‐containing Interneurons , 1993, The European journal of neuroscience.

[83]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[84]  D. Amaral,et al.  Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat , 1990, The Journal of comparative neurology.

[85]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.