Reliable communication over highly connected noisy networks

We consider the task of multiparty computation performed over networks in the presence of random noise. Given an n-party protocol that takes R rounds assuming noiseless communication, the goal is to find a coding scheme that takes $$R'$$R′ rounds and computes the same function with high probability even when the communication is noisy, while maintaining a constant asymptotic rate, i.e., while keeping $$\liminf _{n,R\rightarrow \infty } R/R'$$lim infn,R→∞R/R′ positive. Rajagopalan and Schulman (STOC ’94) were the first to consider this question, and provided a coding scheme with rate $$O(1/\log (d+1))$$O(1/log(d+1)), where d is the maximal degree in the network. While that scheme provides a constant rate coding for many practical situations, in the worst case, e.g., when the network is a complete graph, the rate is $$O(1/\log n)$$O(1/logn), which tends to 0 as n tends to infinity. We revisit this question and provide an efficient coding scheme with a constant rate for the interesting case of fully connected networks. We furthermore extend the result and show that if a (d-regular) network has mixing time m, then there exists an efficient coding scheme with rate $$O(1/m^3\log m)$$O(1/m3logm). This implies a constant rate coding scheme for any n-party protocol over a d-regular network with a constant mixing time, and in particular for random graphs with n vertices and degrees $$n^{\varOmega (1)}$$nΩ(1).

[1]  Leonard J. Schulman,et al.  A coding theorem for distributed computation , 1994, STOC '94.

[2]  Alan M. Frieze,et al.  Optimal construction of edge-disjoint paths in random graphs , 1994, SODA '94.

[3]  Leonard J. Schulman,et al.  Deterministic coding for interactive communication , 1993, STOC.

[4]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[5]  Yael Tauman Kalai,et al.  Interactive Coding for Multiparty Protocols , 2015, ITCS.

[6]  Alan M. Frieze,et al.  Existence and construction of edge disjoint paths on expander graphs , 1992, STOC '92.

[7]  Venkatesan Guruswami,et al.  Linear-time encodable/decodable codes with near-optimal rate , 2005, IEEE Transactions on Information Theory.

[8]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[9]  Bernhard Haeupler,et al.  Optimal Error Rates for Interactive Coding II: Efficiency and List Decoding , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[10]  Leonard J. Schulman,et al.  The Adversarial Noise Threshold for Distributed Protocols , 2014, SODA.

[11]  Yael Tauman Kalai,et al.  Efficient Interactive Coding against Adversarial Noise , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[12]  Yael Tauman Kalai,et al.  Fast Interactive Coding against Adversarial Noise , 2014, JACM.

[13]  Noga Alon,et al.  Finding Disjoint Paths in Expanders Deterministically and Online , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[14]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[15]  Ran Gelles,et al.  Coding for Interactive Communication: A Survey , 2017, Found. Trends Theor. Comput. Sci..

[16]  Amit Sahai,et al.  Efficient and Explicit Coding for Interactive Communication , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[17]  Christoph Lenzen,et al.  "Tri, Tri Again": Finding Triangles and Small Subgraphs in a Distributed Setting - (Extended Abstract) , 2012, DISC.

[18]  Bernhard Haeupler,et al.  Interactive Channel Capacity Revisited , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[19]  Christoph Lenzen,et al.  Optimal deterministic routing and sorting on the congested clique , 2012, PODC '13.

[20]  Daniel A. Spielman,et al.  Linear-time encodable and decodable error-correcting codes , 1995, STOC '95.

[21]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[22]  C. Papadimitriou,et al.  Computing Equilibria in Anonymous Games , 2007, FOCS 2007.

[23]  Moni Naor,et al.  Fast Algorithms for Interactive Coding , 2013, SODA.

[24]  Rafail Ostrovsky,et al.  Optimal Coding for Streaming Authentication and Interactive Communication , 2015, IEEE Transactions on Information Theory.

[25]  Mark Braverman,et al.  Constant-rate coding for multiparty interactive communication is impossible , 2016, STOC.

[26]  Noga Alon,et al.  A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.

[27]  Madhu Sudan,et al.  Optimal error rates for interactive coding I: adaptivity and other settings , 2013, STOC.

[28]  Larry Goldstein,et al.  Size biased couplings and the spectral gap for random regular graphs , 2015, 1510.06013.

[29]  Robert G. Gallager,et al.  Finding parity in a simple broadcast network , 1988, IEEE Trans. Inf. Theory.

[30]  Mark Braverman,et al.  Constant-Rate Coding for Multiparty Interactive Communication Is Impossible , 2017, J. ACM.

[31]  Karthekeyan Chandrasekaran,et al.  Deterministic algorithms for the Lovász Local Lemma , 2009, SODA '10.

[32]  Denis Pankratov,et al.  On the Power of Feedback in Interactive Channels , 2013 .

[33]  Ran Raz,et al.  Interactive channel capacity , 2013, STOC '13.

[34]  Leonard J. Schulman,et al.  Communication on noisy channels: a coding theorem for computation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[35]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[36]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[37]  Kai-Min Chung,et al.  Knowledge-Preserving Interactive Coding , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[38]  Amit Sahai,et al.  Efficient Coding for Interactive Communication , 2014, IEEE Transactions on Information Theory.

[39]  Leonard J. Schulman Coding for interactive communication , 1996, IEEE Trans. Inf. Theory.

[40]  Mark Braverman,et al.  Toward Coding for Maximum Errors in Interactive Communication , 2011, IEEE Transactions on Information Theory.

[41]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[42]  N. Alon The linear arboricity of graphs , 1988 .

[43]  Alan M. Frieze,et al.  Existence and Construction of Edge-Disjoint Paths on Expander Graphs , 1994, SIAM J. Comput..

[44]  Mark Braverman,et al.  List and Unique Coding for Interactive Communication in the Presence of Adversarial Noise , 2014, FOCS.

[45]  Guy Kindler,et al.  Lower Bounds for the Noisy Broadcast Problem , 2008, SIAM J. Comput..

[46]  Ran Gelles,et al.  Capacity of Interactive Communication over Erasure Channels and Channels with Feedback , 2015, SIAM J. Comput..

[47]  Konstantin Tikhomirov,et al.  The spectral gap of dense random regular graphs , 2016, The Annals of Probability.

[48]  Amit Sahai,et al.  Adaptive protocols for interactive communication , 2013, 2016 IEEE International Symposium on Information Theory (ISIT).

[49]  Klim Efremenko,et al.  Maximal Noise in Interactive Communication Over Erasure Channels and Channels With Feedback , 2015, IEEE Transactions on Information Theory.

[50]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.