Nanotribological properties of ALD-processed bilayer TiO2/ZnO films

Abstract TiO2/ZnO films grown by atomic layer deposition (ALD) demonstrated nanotribological behaviors using scratch testing. TEM profiles obtained an amorphous structure TiO2 and nanocrystalline structure ZnO, whereas the sample has significant interface between the TiO2/ZnO films. The experimental results show the relative XRD peak intensities are mainly contributed by a wurtzite oxide ZnO structure and no signal from the amorphous TiO2. With respect to tribology, increased friction causes plastic deformation between the TiO2 and ZnO films, in addition to delamination and particle loosening. The plastic deformation caused by adhesion and/or cohesion failure is reflected in the nanoscratch traces. The pile-up events at a loading penetration of 30 nm were measured at 21.8 μN for RT, 22.4 μN for 300 °C, and 36 μN for 400 °C. In comparison to the other conditions, the TiO2/ZnO films annealed at 400 °C exhibited higher scratch resistance and friction with large debris, indicating the wear volume is reduced with increased annealing temperature and loading.

[1]  Makoto Konagai,et al.  Atomic layer deposition of ZnO transparent conducting oxides , 1997 .

[2]  Clifford L. Henderson,et al.  Area-Selective ALD of Titanium Dioxide Using Lithographically Defined Poly(methyl methacrylate) Films , 2006 .

[3]  T. Scharf,et al.  Atomic layer deposition of ZnO/Al2O3/ZrO2 nanolaminates for improved thermal and wear resistance in carbon-carbon composites , 2012 .

[4]  Th. Dittrich,et al.  Electron Drift Mobility in Porous TiO2 (Anatase) , 1998 .

[5]  W. Hsu,et al.  ZnO-coated carbon nanotubes: an enhanced and red-shifted emission band at UV-VIS wavelength , 2012 .

[6]  Yi-Shao Lai,et al.  Evaluating nanotribological behavior of annealing Si0.8Ge0.2/Si films , 2011, Microelectron. Reliab..

[7]  Meng-Yen Tsai,et al.  ZnO‐Coated Carbon Nanotubes: Flexible Piezoelectric Generators , 2011, Advanced materials.

[8]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[9]  Jyh-Shyang Wang,et al.  Evaluating the abrasive wear of Zn1-xMnxO heteroepitaxial layers using a nanoscratch technique , 2010, Microelectron. Reliab..

[10]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[11]  K. R. Kumar,et al.  Explanation for the appearance of alumina nanoparticles in a cold wall Atomic Layer Deposition system and their characterization , 2010 .

[12]  C. Chou,et al.  Nanoscratch Characterization of GaN Epilayers on c- and a-Axis Sapphire Substrates , 2010, Nanoscale research letters.

[13]  M. Sung,et al.  Light stamping lithography: microcontact printing without inks. , 2006, Journal of the American Chemical Society.

[14]  Wu-Ching Chou,et al.  Luminescence properties of mechanically nanoindented ZnSe , 2011, Microelectron. Reliab..

[15]  M. Sung,et al.  Atomic Layer Deposition of TiO 2 Thin Films from Ti(O i Pr) 2 (dmae) 2 and H 2 O , 2004 .

[16]  P. Chu,et al.  Atomic layer deposition of platinum thin films on anodic aluminium oxide templates as surface-enhanced Raman scattering substrates , 2013 .

[17]  Alina Sivitski,et al.  Surface fatigue and wear of PVD coated punches during fine blanking operation , 2011 .

[18]  S. G. Srinivasan,et al.  on Tailoring the nanocrystalline Structure of Zno to achieve low friction , 2012 .

[19]  Sheng-Yi Lu,et al.  TiO2-coated carbon nanotubes: A redshift enhanced photocatalysis at visible light , 2010 .

[20]  T. M. Lee,et al.  Influence of annealing duration on optical property and surface morphology of ZnO thin film grown by atomic layer deposition , 2010 .

[21]  Marius Grundmann,et al.  High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition , 2003 .

[22]  Davy P Gaillot,et al.  Composite organic-inorganic butterfly scales: production of photonic structures with atomic layer deposition. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Colin Gagg,et al.  Wear as a product failure mechanism – Overview and case studies , 2007 .

[24]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[25]  S. M. Durbin,et al.  Bulk transport measurements in ZnO: the effect of surface electron layers , 2010 .

[26]  W. Hsu,et al.  Nanoscratch studies of SiGe epitaxial layer damage on the Si substrate , 2011 .

[27]  C.R.F. Azevedo,et al.  Three-dimensional analysis of fracture, corrosion and wear surfaces , 2010 .

[28]  W. Chou,et al.  Effect of microstructure on the nanomechanical properties of Zn1−xCdxSe alloys , 2010 .

[29]  W. Hsu,et al.  Annealed binary nanowires: an efficient creation of abundant oxygen deficient states , 2011 .

[30]  Pekka Soininen,et al.  Growth of titanium dioxide thin films by atomic layer epitaxy , 1993 .