High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles

[1]  G. Østrem Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine Ridges , 1959 .

[2]  R. Reyment,et al.  Statistics and Data Analysis in Geology. , 1988 .

[3]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[4]  Surface flow on the ablation area of the Lirung Galcier in Langtang Valley, Nepal Himalayas , 1998 .

[5]  Koji Fujita,et al.  Melt rate of ice cliffs on the Lirung Glacier, Nepal Himalayas, 1996 , 1998 .

[6]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[7]  Alun Hubbard,et al.  Glacier mass-balance determination by remote sensing and high-resolution modelling , 2000, Journal of Glaciology.

[8]  Koji Fujita,et al.  Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas , 2000 .

[9]  Nozomu Naito,et al.  Numerical simulation of recent shrinkage of Khumbu Glacier, Nepal Himalayas , 2000 .

[10]  Koji Fujita,et al.  Distribution Characteristics and Energy Balance of Ice Cliffs on Debris-covered Glaciers, Nepal Himalaya , 2002 .

[11]  L. Braun,et al.  A comparison of three methods of mass-balance determination in the Tuyuksu glacier region, Tien Shan, Central Asia , 2004, Journal of Glaciology.

[12]  K. Fujita,et al.  Evaporation and percolation effect on melting at debris-covered Lirung Glacier, Nepal Himalayas, 1996 , 2004 .

[13]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[14]  A. Kääb Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya , 2005 .

[15]  L. Nicholson,et al.  Calculating ice melt beneath a debris layer using meteorological data , 2006, Journal of Glaciology.

[16]  B. Devereux,et al.  Evaluating the potential of high‐resolution airborne LiDAR data in glaciology , 2006 .

[17]  C. Mayer,et al.  Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan , 2006, Annals of Glaciology.

[18]  Adrian Luckman,et al.  The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers , 2007 .

[19]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[20]  Tobias Bolch,et al.  Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data , 2007 .

[21]  P. Chevallier,et al.  Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India) , 2007 .

[22]  J. Bamber,et al.  A review of remote sensing methods for glacier mass balance determination , 2007 .

[23]  C. Werner,et al.  Estimation of Arctic glacier motion with satellite L-band SAR data , 2008 .

[24]  Koji Fujita,et al.  Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya , 2008, Journal of Glaciology.

[25]  Jean Ponce,et al.  Accurate Camera Calibration from Multi-View Stereo and Bundle Adjustment , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Achim Helm,et al.  Sub‐debris melt rates on southern inylchek glacier, central tian shan , 2008 .

[27]  A. Luckman,et al.  Ice velocity and climate variations for Baltoro Glacier, Pakistan , 2009 .

[28]  Michael P. Bishop,et al.  Glacier velocities across the central Karakoram , 2009, Annals of Glaciology.

[29]  A. Luckman,et al.  Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking , 2009, Journal of Glaciology.

[30]  N. Takeuchi,et al.  Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya , 2009, Journal of Glaciology.

[31]  Shi-yin Liu,et al.  Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China , 2010, Journal of Glaciology.

[32]  Koji Fujita,et al.  Formation conditions of supraglacial lakes on debris-covered glaciers in the Himalaya , 2010, Journal of Glaciology.

[33]  B. Brock,et al.  An energy-balance model for debris-covered glaciers including heat conduction through the debris layer , 2010, Journal of Glaciology.

[34]  M. Bierkens,et al.  Climate Change Will Affect the Asian Water Towers , 2010, Science.

[35]  K. Fujita,et al.  Spatially heterogeneous wastage of Himalayan glaciers , 2011, Proceedings of the National Academy of Sciences.

[36]  Geert Verhoeven,et al.  Taking computer vision aloft – archaeological three‐dimensional reconstructions from aerial photographs with photoscan , 2011 .

[37]  Andrea Fischer,et al.  Comparison of direct and geodetic mass balances on a multi-annual time scale , 2011 .

[38]  T. Bolch,et al.  Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery , 2011 .

[39]  J. Cogley,et al.  Present and future states of Himalaya and Karakoram glaciers , 2011, Annals of Glaciology.

[40]  B. Bookhagen,et al.  Spatially variable response of Himalayan glaciers to climate change affected by debris cover , 2011 .

[41]  Y. Arnaud,et al.  Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas , 2012, Nature.

[42]  Birger Stichelbaut,et al.  Three-dimensional recording of archaeological remains in the Altai Mountains , 2012, Antiquity.

[43]  Tobias Bolch,et al.  Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards , 2012 .

[44]  B. Brock,et al.  Including debris cover effects in a distributed model of glacier ablation , 2012 .

[45]  K. Fujita,et al.  Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008 , 2012, Journal of Glaciology.

[46]  Karin L. Lemkau,et al.  Floating oil-covered debris from Deepwater Horizon: identification and application , 2012 .

[47]  D. Lettenmaier,et al.  The contribution of glacier melt to streamflow , 2012 .

[48]  M. Juen,et al.  Impact of varying debris cover thickness on catchment scale ablation: a case study for Koxkar glacier in the Tien Shan , 2013 .

[49]  Air temperature distribution over a debris covered glacier in the Nepalese Himalayas , 2013 .

[50]  Y. Arnaud,et al.  Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007 , 2013 .

[51]  B. Brock,et al.  Deriving supraglacial debris thickness using satellite data on the Lirung Glacier in the Nepalese Himalayas , 2013 .

[52]  C. Hugenholtz,et al.  Brief Communication: Low-cost, on-demand aerial photogrammetry for glaciological measurement , 2013 .

[53]  Mark A. Fonstad,et al.  Topographic structure from motion: a new development in photogrammetric measurement , 2013 .

[54]  Y. Arnaud,et al.  Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 , 2013 .

[55]  T. R. Lauknes,et al.  Surge dynamics in the Nathorstbreen glacier system, Svalbard , 2013 .

[56]  Marc F. P. Bierkens,et al.  Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds , 2013 .

[57]  B. Brock,et al.  Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy , 2014, Journal of Glaciology.

[58]  S. M. Jong,et al.  Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography , 2014 .

[59]  Walter W. Immerzeel,et al.  The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas , 2014 .

[60]  Jean-Michel Friedt,et al.  Where does a glacier end? GPR measurements to identify the limits between valley slopes and actual glacier body. Application to the Austre Lovénbreen, Spitsbergen , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[61]  T. R. Lauknes,et al.  The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products , 2015 .