Novel genetic tools for studying food-borne Salmonella.

[1]  R. Vossen,et al.  Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms , 2008, Nucleic acids research.

[2]  Georgios S. Vernikos,et al.  Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. , 2008, Genome research.

[3]  T. Whittam,et al.  Allele distribution and genetic diversity of VNTR loci in Salmonella enterica serotype Enteritidis isolates from different sources , 2008, BMC Microbiology.

[4]  J. Wain,et al.  High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi , 2008, Nature Genetics.

[5]  Thomas Zeng,et al.  Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing , 2008, Nucleic acids research.

[6]  S. Porwollik,et al.  Salmonella promoters preferentially activated inside tumors. , 2008, Cancer research.

[7]  S. Porwollik,et al.  Salmonella Serovar Identification Using PCR-Based Detection of Gene Presence and Absence , 2008, Journal of Clinical Microbiology.

[8]  Panagiotis Deloukas,et al.  High-Throughput Genotyping of Salmonella enterica Serovar Typhi Allowing Geographical Assignment of Haplotypes and Pathotypes within an Urban District of Jakarta, Indonesia , 2008, Journal of Clinical Microbiology.

[9]  C. Altier,et al.  Genome-Wide Screen of Salmonella Genes Expressed during Infection in Pigs, Using In Vivo Expression Technology , 2007, Applied and Environmental Microbiology.

[10]  S. Octavia,et al.  Single-Nucleotide-Polymorphism Typing and Genetic Relationships of Salmonella enterica Serovar Typhi Isolates , 2007, Journal of Clinical Microbiology.

[11]  P. Fedorka-Cray,et al.  Prevalence of streptogramin resistance in enterococci from animals: identification of vatD from animal sources in the USA. , 2007, International journal of antimicrobial agents.

[12]  D. Maskell,et al.  Role in virulence and protective efficacy in pigs of Salmonella enterica serovar Typhimurium secreted components identified by signature-tagged mutagenesis. , 2007, Microbiology.

[13]  L. Bodrossy,et al.  MLST-v, multilocus sequence typing based on virulence genes, for molecular typing of Salmonella enterica subsp. enterica serovars. , 2007, Journal of microbiological methods.

[14]  J. Besser,et al.  Comparison of Multiple-Locus Variable-Number Tandem Repeat Analysis, Pulsed-Field Gel Electrophoresis, and Phage Typing for Subtype Analysis of Salmonella enterica Serotype Enteritidis , 2006, Journal of Clinical Microbiology.

[15]  R. Harshey,et al.  Uncovering a Large Set of Genes That Affect Surface Motility in Salmonella enterica Serovar Typhimurium , 2006, Journal of bacteriology.

[16]  S. Porwollik,et al.  Identification of Specific Gene Sequences Conserved in Contemporary Epidemic Strains of Salmonella enterica † , 2006 .

[17]  Seonghan Kim,et al.  Multiplex PCR-Based Method for Identification of Common Clinical Serotypes of Salmonella enterica subsp. enterica , 2006, Journal of Clinical Microbiology.

[18]  Yipeng Wang,et al.  Selective Silencing of Foreign DNA with Low GC Content by the H-NS Protein in Salmonella , 2006, Science.

[19]  N. Ledeboer,et al.  Salmonella enterica Serovar Typhimurium Requires the Lpf, Pef, and Tafi Fimbriae for Biofilm Formation on HEp-2 Tissue Culture Cells and Chicken Intestinal Epithelium , 2006, Infection and Immunity.

[20]  B. Swaminathan,et al.  Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. , 2006, Foodborne pathogens and disease.

[21]  M. Rasmussen,et al.  Identification of Salmonella enterica Serovar Typhimurium Genes Important for Survival in the Swine Gastric Environment , 2006, Applied and Environmental Microbiology.

[22]  N. Dowidar,et al.  Identification of New Flagellar Genes of Salmonella enterica Serovar Typhimurium , 2006, Journal of bacteriology.

[23]  B. Swaminathan,et al.  Surveillance for human Salmonella infections in the United States. , 2006, Journal of AOAC International.

[24]  M. McClelland,et al.  Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Monack,et al.  Genome-Wide Screen for Salmonella Genes Required for Long-Term Systemic Infection of the Mouse , 2006, PLoS pathogens.

[26]  מחקר ביטוח לאומי Summary for 2005 , 2006 .

[27]  Yung-Fu Chang,et al.  Novel Attenuated Salmonella enterica Serovar Choleraesuis Strains as Live Vaccine Candidates Generated by Signature-Tagged Mutagenesis , 2005, Infection and Immunity.

[28]  Mi-jin Lee,et al.  Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. , 2005, Microbiology.

[29]  M. Merighi,et al.  Resolvase-In Vivo Expression Technology Analysis of the Salmonella enterica Serovar Typhimurium PhoP and PmrA Regulons in BALB/c Mice , 2005, Journal of bacteriology.

[30]  L. Florea,et al.  Differences in Gene Content between Salmonella enterica Serovar Enteritidis Isolates and Comparison to Closely Related Serovars Gallinarum and Dublin , 2005, Journal of bacteriology.

[31]  Stanley Falkow,et al.  Microarray-Based Detection of Salmonella enterica Serovar Typhimurium Transposon Mutants That Cannot Survive in Macrophages and Mice , 2005, Infection and Immunity.

[32]  P. Rainey,et al.  Unraveling the Secret Lives of Bacteria: Use of In Vivo Expression Technology and Differential Fluorescence Induction Promoter Traps as Tools for Exploring Niche-Specific Gene Expression , 2005, Microbiology and Molecular Biology Reviews.

[33]  Songnian Hu,et al.  The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen , 2005, Nucleic acids research.

[34]  E. Boyd,et al.  Genomic Comparisons of Salmonella enterica Serovar Dublin, Agona, and Typhimurium Strains Recently Isolated from Milk Filters and Bovine Samples from Ireland, Using a Salmonella Microarray , 2005, Applied and Environmental Microbiology.

[35]  Rekha R Meyer,et al.  Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.

[36]  Mark P Stevens,et al.  Identification of host‐specific colonization factors of Salmonella enterica serovar Typhimurium , 2004, Molecular microbiology.

[37]  C. Solano,et al.  Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation , 2004, Molecular microbiology.

[38]  L. Florea,et al.  Characterization of Salmonella enterica Subspecies I Genovars by Use of Microarrays , 2004, Journal of bacteriology.

[39]  W. Rabsch,et al.  Host Restriction of Salmonella enterica Serotype Typhimurium Pigeon Isolates Does Not Correlate with Loss of Discrete Genes , 2004, Journal of bacteriology.

[40]  J. Frye,et al.  Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes , 2004, Molecular microbiology.

[41]  Guy Plunkett,et al.  Comparative Genomics of Salmonellaenterica Serovar Typhi Strains Ty2 and CT18 , 2003, Journal of bacteriology.

[42]  G. Dougan,et al.  Genomic Comparison of Salmonella enterica Serovars and Salmonella bongori by Use of an S. enterica Serovar Typhimurium DNA Microarray , 2003, Journal of bacteriology.

[43]  S. Porwollik,et al.  Evolutionary genomics of Salmonella: Gene acquisitions revealed by microarray analysis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Bumann Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two‐colour flow cytometry , 2002, Molecular microbiology.

[45]  J. Shendure,et al.  Selection analyses of insertional mutants using subgenic-resolution arrays , 2001, Nature Biotechnology.

[46]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[47]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[48]  T. Wallis,et al.  Salmonella Pathogenicity Island 2 Influences Both Systemic Salmonellosis andSalmonella-Induced Enteritis in Calves , 2001, Infection and Immunity.

[49]  J. Slauch,et al.  Tissue-Specific Gene Expression Identifies a Gene in the Lysogenic Phage Gifsy-1 That Affects Salmonella enterica Serovar Typhimurium Survival in Peyer's Patches , 2000, Journal of bacteriology.

[50]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Breuer,et al.  Salmonella Cost Estimate Updated Using FoodNet Data , 1999 .

[52]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S Falkow,et al.  Fluorescence-based isolation of bacterial genes expressed within host cells. , 1997, Science.

[54]  U. Hentschel,et al.  Bacterial infection as assessed by in vivo gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Falkow,et al.  Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid‐inducible promoters by differential fluorescence induction , 1996, Molecular microbiology.

[56]  T. Whittam,et al.  Molecular genetic relationships of the salmonellae , 1996, Applied and environmental microbiology.

[57]  J. Shea,et al.  Simultaneous identification of bacterial virulence genes by negative selection. , 1995, Science.

[58]  J. Tobias,et al.  Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[59]  MJ Mahan,et al.  Selection of bacterial virulence genes that are specifically induced in host tissues , 1993, Science.