Is Einsteinian no-signalling violated in Bell tests?

Abstract Relativistic invariance is a physical law verified in several domains of physics. The impossibility of faster than light influences is not questioned by quantum theory. In quantum electrodynamics, in quantum field theory and in the standard model relativistic invariance is incorporated by construction. Quantum mechanics predicts strong long range correlations between outcomes of spin projection measurements performed in distant laboratories. In spite of these strong correlations marginal probability distributions should not depend on what was measured in the other laboratory what is called shortly: non-signalling. In several experiments, performed to test various Bell-type inequalities, some unexplained dependence of empirical marginal probability distributions on distant settings was observed. In this paper we demonstrate how a particular identification and selection procedure of paired distant outcomes is the most probable cause for this apparent violation of no-signalling principle. Thus this unexpected setting dependence does not prove the existence of superluminal influences and Einsteinian no-signalling principle has to be tested differently in dedicated experiments. We propose a detailed protocol telling how such experiments should be designed in order to be conclusive. We also explain how magical quantum correlations may be explained in a locally causal way.

[1]  Arthur Fine,et al.  Joint distributions, quantum correlations, and commuting observables , 1982 .

[2]  H. De Raedt,et al.  Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments , 2013, Optics & Photonics - Optical Engineering + Applications.

[3]  Assumptions underlying Bell's inequalities , 2002, quant-ph/0208161.

[4]  Ana María Cetto,et al.  Emergence of quantization: the spin of the electron , 2014 .

[5]  M. Kupczynski,et al.  On some important statistical tests , 1977 .

[6]  Itamar Pitowsky,et al.  Deterministic model of spin and statistics , 1983 .

[7]  K. Michielsen,et al.  Reply to comment on “A local realist model for correlations of the singlet state" by M.P. Seevinck and J.-Å. Larsson , 2007, 0706.2957.

[8]  Luigi Accardi,et al.  Some loopholes to save quantum nonlocality , 2005 .

[9]  Marian Kupczynski,et al.  The Contextuality Loophole is Fatal for the Derivation of Bell Inequalities: Reply to a Comment by I. Schmelzer , 2016, 1611.05021.

[10]  Nicolas Gisin,et al.  Exploring the Limits of Quantum Nonlocality with Entangled Photons , 2015, 1506.01649.

[11]  M. Kupczyński,et al.  Bertrand's paradox and Bell's inequalities , 1987 .

[12]  H. De Raedt,et al.  Possible experience: From Boole to Bell , 2009, 0907.0767.

[13]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[14]  Ehtibar N. Dzhafarov,et al.  Selectivity in Probabilistic Causality: Where Psychology Runs Into Quantum Physics , 2011, 1110.2388.

[15]  E. Wigner On Hidden Variables and Quantum Mechanical Probabilities , 1970 .

[16]  M. Kupczyński,et al.  Pitovsky model and complementarity , 1987 .

[17]  Marian Kupczynski,et al.  EPR Paradox, Locality and Completeness of Quantum Theory , 2007, 0710.3510.

[18]  M. Kupczyński,et al.  Tests for the purity of the initial ensemble of states in scattering experiments , 1974 .

[19]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[20]  R. B. Lindsay,et al.  Essays 1958-1962 on Atomic Physics and Human Knowledge , 1987 .

[21]  Ana María Cetto,et al.  On hidden-variable theories and Bell's inequality , 1972 .

[22]  Marian Kupczynski Bell Inequalities, Experimental Protocols and Contextuality , 2014 .

[23]  Marian Kupczynski,et al.  Breakdown of statistical inference from some random experiments , 2016, Comput. Phys. Commun..

[24]  Saverio Pascazio,et al.  Time and Bell-type inequalities , 1986 .

[25]  J. Bancal,et al.  Taming finite statistics for device-independent quantum information , 2017 .

[26]  Marian Kupczynski,et al.  Causality and local determinism versus quantum nonlocality , 2013, 1312.0636.

[27]  Luigi Accardi,et al.  Universality of the EPR-chameleon model , 2007 .

[28]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[29]  Jan-AAke Larsson,et al.  Loopholes in Bell inequality tests of local realism , 2014, 1407.0363.

[30]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[31]  P. Nilsson,et al.  Observation of angular variation of UV photoemission spectra from a (111) surface of Ag , 1971 .

[32]  Kristel Michielsen,et al.  A computer program to simulate Einstein-Podolsky-Rosen-Bohm experiments with photons , 2007, Comput. Phys. Commun..

[33]  T. Nieuwenhuizen,et al.  Is the Contextuality Loophole Fatal for the Derivation of Bell Inequalities? , 2011 .

[34]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[35]  Kristel Michielsen,et al.  Event-by-Event Simulation of Einstein-Podolsky-Rosen-Bohm Experiments , 2007, 0712.3693.

[36]  L. Accardi Topics in quantum probability , 1981 .

[37]  Armen E. Allahverdyan,et al.  72 57 v 1 [ qu an tph ] 2 8 M ar 2 01 3 Statistical theory of ideal quantum measurement processes , 2014 .

[38]  M. Kupczyński,et al.  On some new tests of completeness of quantum mechanics , 1986 .

[39]  W. M. de Muynck,et al.  Interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness , 1994 .

[40]  Armen E. Allahverdyan,et al.  Understanding quantum measurement from the solution of dynamical models , 2011, 1107.2138.

[41]  H. De Raedt,et al.  Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis and simulation , 2011, 1112.2629.

[42]  Andrei Khrennikov,et al.  CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities , 2014, 1406.4886.

[43]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[44]  Marian Kupczynski,et al.  Can we close the Bohr–Einstein quantum debate? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Karl Hess,et al.  Bell’s theorem: Critique of proofs with and without inequalities , 2005 .

[46]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[47]  J. Bertrand Calcul Des Probabilites , 2005 .

[48]  Marian Kupczynski Significance tests and sample homogeneity loophole , 2015 .

[49]  E. T. Jaynesz,et al.  Clearing up Mysteries { the Original Goal , 1989 .

[50]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[51]  I. Pitowsky,et al.  George Boole's ‘Conditions of Possible Experience’ and the Quantum Puzzle , 1994, The British Journal for the Philosophy of Science.

[52]  Karl Hess,et al.  A possible loophole in the theorem of Bell , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  N. Bohr,et al.  II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[54]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[55]  Diederik Aerts,et al.  New fundamental evidence of non-classical structure in the combination of natural concepts , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Robert W. Spekkens,et al.  Foundations of Quantum Mechanics , 2007 .

[57]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[58]  A. Bednorz Analysis of assumptions of recent tests of local realism , 2015, 1511.03509.

[59]  Andrei Khrennikov,et al.  Violation of Bell’s Inequality and non‐Kolmogorovness , 2009 .

[60]  Karl Hess,et al.  Extended Boole-Bell inequalities applicable to quantum theory , 2009, 0901.2546.

[61]  Richard Gill,et al.  Bell's inequality and the coincidence-time loophole , 2003, quant-ph/0312035.

[62]  Guillaume Adenier,et al.  Is the fair sampling assumption supported by EPR experiments , 2007 .

[63]  K. Michielsen,et al.  The photon identification loophole in EPRB experiments: computer models with single-wing selection , 2017, 1707.08307.

[64]  K. Michielsen,et al.  A local realist model for correlations of the singlet state , 2006 .

[65]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[66]  Siegfried Fussy,et al.  Relational causality and classical probability: Grounding quantum phenomenology in a superclassical theory , 2014 .

[67]  S. Miyashita,et al.  Event-by-event simulation of quantum phenomena : Application to Einstein-Podolosky-Rosen-Bohm experiments , 2007, 0712.3781.

[68]  Andrei Khrennikov,et al.  Bell's inequality: Physics meets Probability , 2007, 0709.3909.

[69]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[70]  A. T. Bharucha-Reid,et al.  The Theory of Probability. , 1963 .

[71]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure , 2010 .

[72]  M. KtYeCZYNSrdt Is the Hilbert space language too rich , 2005 .

[73]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[74]  T. Nieuwenhuizen,et al.  Where Bell went wrong , 2008, 0812.3058.

[75]  M. Kupczynski,et al.  Entanglement and Bell Inequalities , 2004 .

[76]  M. Kupczynski Entanglement and quantum nonlocality demystified , 2012, 1205.4636.

[77]  Karl Hess,et al.  Hidden assumptions in the derivation of the theorem of Bell , 2011, 1108.3583.

[78]  Nicolas Gisin,et al.  Quantum Nonlocality: How Does Nature Do It? , 2009, Science.

[79]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[80]  W. Philipp,et al.  Bell's theorem and the problem of decidability between the views of Einstein and Bohr , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Guillaume Adenier,et al.  Test of the no‐signaling principle in the Hensen loophole‐free CHSH experiment , 2016, 1606.00784.

[82]  Kristel Michielsen,et al.  Event-based simulation of quantum physics experiments , 2013, 1312.6942.

[83]  L. M. M.-T. Theory of Probability , 1929, Nature.

[84]  T. Phipps On the “Completeness” of Quantum Mechanics , 1992 .

[85]  Ehtibar N. Dzhafarov,et al.  No-Forcing and No-Matching Theorems for Classical Probability Applied to Quantum Mechanics , 2014 .

[86]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[87]  Jeffrey T. Leek,et al.  Statistics: P values are just the tip of the iceberg , 2015, Nature.

[88]  Marian Kupczynski On operational approach to entanglement and how to certify it , 2016 .

[89]  Marian Kupczynski,et al.  Is quantum theory predictably complete? , 2008, 0810.1259.

[90]  R. G. Crafton A compilation and analysis of melting curve data for argon , 1971 .

[91]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[92]  Marian Kupczynski,et al.  EPR paradox, quantum nonlocality and physical reality , 2016, 1602.02959.

[93]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[94]  S. Miyashita,et al.  Event-Based Computer Simulation Model of Aspect-Type Experiments Strictly Satisfying Einstein's Locality Conditions , 2007, 0712.2565.

[95]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[96]  Marian Kupczynski Seventy Years of the EPR Paradox , 2006 .

[97]  Marian Kupczynski Time Series, Stochastic Processes and Completeness of Quantum Theory , 2011 .

[98]  Marissa Giustina,et al.  Bell-inequality violation with entangled photons, free of the coincidence-time loophole , 2013, 1309.0712.

[99]  Contextual Observables and Quantum Information , 2004, quant-ph/0408002.

[100]  James F. Babb,et al.  Electron-nuclear coupling in the hyperfine structure of the hydrogen molecular ion. , 1991 .

[101]  Dirk Aerts,et al.  A possible explanation for the probabilities of quantum mechanics , 1986 .

[102]  Emanuel Knill,et al.  Asymptotically optimal data analysis for rejecting local realism , 2011 .

[103]  Andrei Khrennikov Bell's Inequality: Nonlocalty, “Death of Reality”, or Incompatibility of Random Variables? , 2007 .

[104]  Andrei Khrennikov,et al.  Contextual Approach to Quantum Formalism , 2009 .

[105]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[106]  Albert Einstein,et al.  Physics and reality , 1936 .