Comparison of WKB calculations and experimental results for three-dimensional cochlear models.

The WKB asymptotic method is applied to the calculation of cochlear models with square scala cross section, for which the fluid motion is fully three dimensional. The analysis begins with the exact solution for wave propagation in a duct with constant properties. This solution is somewhat tedious but straightforward, since it requires a Fourier series expansion across the duct. Then with the formulation of Whitham [Linear and Nonlinear Waves (Wiley, New York, 1974)], the approximate solution is readily generated for the duct with properties which vary slowly along the length. Numerical calculations are carried out for the experimental models of Cannel [Ph.D. thesis, Univ. of Warwick (1969)] and Helle [Dr.-Ing. disser., Technische Univ., Müchen (1974)] who furnish quantitative details of both "basilar membrane" response and model parameters. Without any free parameters for adjusting, the present WKB solution shows quite satisfactory agreement with the experimental model results. Computer time is reasonable; the calculation of displacement envelope and phase at a number of stations along the cochlea for a given frequency requires only one second of CPU time. Thus the credibility and practically of the approach is established for the investigation of yet more realistic and more elaborate cochlear models.