Nonparametric Bayesian Learning of Switching Linear Dynamical Systems

Many nonlinear dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our nonparametric Bayesian approach utilizes a hierarchical Dirichlet process prior to learn an unknown number of persistent, smooth dynamical modes. We develop a sampling algorithm that combines a truncated approximation to the Dirichlet process with efficient joint sampling of the mode and state sequences. The utility and flexibility of our model are demonstrated on synthetic data, sequences of dancing honey bees, and the IBOVESPA stock index.

[1]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[2]  M. Aoki,et al.  State space modeling of multiple time series , 1991 .

[3]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[4]  Vladimir Pavlovic,et al.  Learning Switching Linear Models of Human Motion , 2000, NIPS.

[5]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[6]  H. Ishwaran,et al.  Exact and approximate sum representations for the Dirichlet process , 2002 .

[7]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Arnaud Doucet,et al.  Bayesian Inference for Dynamic Models with Dirichlet Process Mixtures , 2006, 2006 9th International Conference on Information Fusion.

[9]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[10]  James M. Rehg,et al.  Learning and Inferring Motion Patterns using Parametric Segmental Switching Linear Dynamic Systems , 2008, International Journal of Computer Vision.

[11]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[12]  Alan S. Willsky,et al.  Hierarchical Dirichlet processes for tracking maneuvering targets , 2007, 2007 10th International Conference on Information Fusion.

[13]  Kevin P. Murphy,et al.  Modeling changing dependency structure in multivariate time series , 2007, ICML '07.

[14]  Michael I. Jordan,et al.  An HDP-HMM for systems with state persistence , 2008, ICML '08.